4.4 Article

Mass spectrometric analysis reveals a functionally important PKA phosphorylation site in a Kir3 channel subunit

Journal

PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY
Volume 458, Issue 2, Pages 303-314

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00424-008-0628-9

Keywords

Phosphorylation; G-protein-gated inwardly rectifying potassium channels Posttranslational modification; Ion channel regulation; Protein kinase A; Mass spectrometry; MALDI-TOF; Tandem MS

Categories

Funding

  1. National Institute of Health [HL-54185, CA88325, RR017802, RR00862]

Ask authors/readers for more resources

Phosphorylation of the Kir3 channel by cAMP-dependent protein kinase (PKA) potentiates activity and strengthens channel-PIP2 interactions, whereas phosphorylation by protein kinase C (PKC) exerts the opposite effects (Keselman et al., Channels 1:113-123, 2007; Lopes et al., Channels 1:124-134, 2007). Unequivocal identification of phosphorylated residues in ion channel proteins has been difficult, but recent advances in mass spectrometry techniques have allowed precise identification of phosphorylation sites (Park et al., Science 313:976-979, 2006). In this study, we utilized mass spectrometry to identify phosphorylation sites within the Kir3.1 channel subunit. We focused on the Kir3.1 C-terminal cytosolic domain that has been reported to be regulated by several modulators. In vitro phosphorylation by PKA exhibited a convincing signal upon treatment with a phosphoprotein stain. The phosphorylated C terminus was subjected to mass spectrometric analysis using matrix-assisted lased desorption/ionization-time of flight mass spectroscopy (MS). Peptides whose mass underwent a shift corresponding to addition of a phosphate group were then subjected to tandem MS (MS/MS) in order to confirm the modification and determine its precise location. Using this approach, we identified S385 as an in vitro phosphorylation site. Mutation of this residue to alanine resulted in a reduced sensitivity of Kir3.1* currents to H89 and Forskolin, confirming an in vivo role for this novel site of the Kir3.1 channel subunit in its regulation by PKA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available