4.1 Article

Plagioclase-aqueous solution equilibrium: Concentration dependence

Journal

PETROLOGY
Volume 16, Issue 2, Pages 177-192

Publisher

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1134/S0869591108020045

Keywords

-

Ask authors/readers for more resources

The plagioclase-(NaCl + CaCl2) exchange equilibrium was examined experimentally at 700 degrees C, 0.5 GPa in aqueous solutions with salt concentrations from 1 to 64 m. The Ca/(Ca + Na) distribution between plagioclase and solution (salt melt) is illustrated in five diagrams constructed for concentrations of 1, 4, 8, 16, and 64 m. The elevated bulk salinity of the fluid at a constant Ca/(Ca + Na) ratio results in plagioclase albitization, with this effect reaching a maximum in relatively dilute solutions (1-4 m). In concentrated solutions (salt melts), the shift in the plagioclase composition with variations in the salinity is relatively insignificant. The simple hydration of basic rocks (purely metamorphic reaction) is associated with the albitization of plagioclase, and calculations suggest a possible shift from anorthite to oligoclase. This is also applicable to chemically more complex mineral associations: an increase in the overall salinity of the fluid should result in an increase in the activity of monovalent cations relative to that of bivalent ones and, correspondingly, stimulate reactions in which alkali earth cations (Ca + Mg + Fe) are substituted for alkalis (Na + K + Li). Although our experiments were carried out at temperatures 50 degrees C lower than the melting point of albite under a pure water pressure (0.5 GPa), the addition of CaCl2 solution to albite (i.e., plagioclase anorthitization and a decrease in the water activity in the salt solutions) induced the appearance of melt because of quartz formation by the reaction 2Ab + CaCl2 --> An + 2NaCl + 4Qtz and the eutectic phase proportions in the Ab + Qtz system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available