4.4 Article

Ablation of glucagon receptor signaling by peptide-based glucagon antagonists improves glucose tolerance in high fat fed mice

Journal

PEPTIDES
Volume 60, Issue -, Pages 95-101

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.peptides.2014.08.002

Keywords

Glucagon antagonist; Diabetes; Glucose tolerance; Insulin sensitivity

Funding

  1. Department of Education and Learning, Northern Ireland
  2. University of Ulster
  3. Invest Northern Ireland [POC106]

Ask authors/readers for more resources

Modification to the structure of glucagon has provided a number of glucagon receptor antagonists with possible therapeutic application for diabetes. These novel peptide analogs include desHis(1)Pro(4)Glu(9)-glucagon and desHis(1)Pro(4)Glu(9)(Lys(30)PAL)-glucagon. This study has evaluated the metabolic benefits of once daily administration of desHis(1)Pro(4)Glu(9)-glucagon and desHis(1)Pro(4)Glu(9)(Lys(30)PAL)-glucagon in high fat (45%) fed mice for 15 days. Administration of desHis(1)Pro(4)Glu(9)-glucagon and desHis(1)Pro(4)Glu(9)(Lys(30)PAL)-glucagon had no significant effect on body weight, food intake or circulating glucose concentrations during the treatment period. However, both peptides significantly (P < 0.05 to P < 0.01) reduced circulating plasma insulin concentrations from day 6 onwards. Oral glucose tolerance and insulin sensitivity, as assessed by exogenous insulin administration, were significantly (P < 0.01 to P < 0.001) improved by both desHis(1)Pro(4)Glu(9)-glucagon and desHis(1)Pro(4)Glu(9)(Lys(30)PAL)-glucagon. These metabolic benefits were accompanied by significantly (P < 0.01) increased pancreatic insulin stores. No significant differences in blood triacylglycerol or cholesterol levels were notedwith desHis(1)Pro(4)Glu(9)-glucagon, however desHis(1)Pro(4)Glu(9)(Lys(30)PAL)-glucagon treatment significantly (P < 0.01) increased HDL-cholesterol levels. Glucagon-mediated elevations of glucose and insulin were effectively (P < 0.01 to P < 0.001) annulled in both treatment groups on day 15. Interestingly, glucose levels during an intraperitoneal glucose tolerance test were not altered by either desHis(1)Pro(4)Glu(9)-glucagon or desHis(1)Pro(4)Glu(9)(Lys(30)PAL)-glucagon treatment. These data provide further evidence that glucagon antagonism could provide an effective means of treating T2DM. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available