4.3 Article

Parallelization of Nullspace Algorithm for the computation of metabolic pathways

Journal

PARALLEL COMPUTING
Volume 37, Issue 6-7, Pages 261-278

Publisher

ELSEVIER
DOI: 10.1016/j.parco.2011.04.002

Keywords

Biochemical network; Metabolic pathway; Nullspace Algorithm; Elementary flux mode

Funding

  1. NIH [GM077529]
  2. NSF [0534286, 0916750]
  3. University of Minnesota, Rochester
  4. Direct For Computer & Info Scie & Enginr
  5. Div Of Information & Intelligent Systems [0534286] Funding Source: National Science Foundation
  6. Div Of Information & Intelligent Systems
  7. Direct For Computer & Info Scie & Enginr [916750] Funding Source: National Science Foundation

Ask authors/readers for more resources

Elementary mode analysis is a useful metabolic pathway analysis tool in understanding and analyzing cellular metabolism, since elementary modes can represent metabolic pathways with unique and minimal sets of enzyme-catalyzed reactions of a metabolic network under steady state conditions. However, computation of the elementary modes of a genome-scale metabolic network with 100-1000 reactions is very expensive and sometimes not feasible with the commonly used serial Nullspace Algorithm. In this work, we develop a distributed memory parallelization of the Nullspace Algorithm to handle efficiently the computation of the elementary modes of a large metabolic network. We give an implementation in C++ language with the support of MPI library functions for the parallel communication. Our proposed algorithm is accompanied with an analysis of the complexity and identification of major bottlenecks during computation of all possible pathways of a large metabolic network. The algorithm includes methods to achieve load balancing among the compute-nodes and specific communication patterns to reduce the communication overhead and improve efficiency. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available