4.2 Article

MICROTAPHOFACIES ANALYSIS OF LOWER OLIGOCENE TURBID-WATER CORAL ASSEMBLAGES

Journal

PALAIOS
Volume 26, Issue 11-12, Pages 805-820

Publisher

SEPM-SOC SEDIMENTARY GEOLOGY
DOI: 10.2110/palo.2011.p11-011r

Keywords

-

Funding

  1. German Science Foundation (DFG, Deutsche Forschungsgemeinschaft)
  2. University of Tubingen
  3. Ljubljana University
  4. International Association of Sedimentologists (IAS)

Ask authors/readers for more resources

The presence, distribution, and preservation of coral-rich facies in the lower Oligocene Gornji Grad Beds of Slovenia are analyzed using a microtaphofacies approach. This method allows taphonomic signatures to be recognized in thin section along with the presence of coral specimens and growth forms within and between stratigraphic logs. Coral-dominated limestones within the Gornji Grad Beds are represented by rudstones in a packstone-wackestone matrix. The conditions are generally reconstructed as turbid water due to the prevalence of muddy carbonate matrix, which also leads to excellently preserved morphological features in thin section. These beds represent a reference area for the study of Paleogene corals, especially during the Oligocene, a key phase of reef development during the Cenozoic. This study also contributes to the characterization of fossil reefs in turbid-water environments. The evaluated coral fauna is dominated by delicate-branching Stylophora and Acropora, although thickly branching (Actinacis, Goniopora), phaceloid (Caulastrea), and massive forms (Alveopora, Astreopora, Antiguastrea) also occur. Assessed taphonomic signatures include fragmentation, abrasion, bioerosion, and encrustation. Three types of bioerosion traces are distinguished (Entobia, Gastrochoenolites, Trypanites). Encrustation includes both thin crusts and complex multi-taxon sequences dominated by coralline algae. Five microtaphofacies are distinguished based on variation of taphonomic signatures, taxonomic composition, and growth forms. Differences in microtaphofacies are interpreted with respect to turbidity, sediment accumulation, and water turbulence; both parautochthonous and allochthonous deposits are reconstructed. A depositional model based on the distribution of microtaphofacies in the studied sections shows a succession of coral communities with different colonization strategies reflecting generally high stress levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available