4.7 Article

Key role of phosphodiesterase 4A (PDE4A) in autophagy triggered by yessotoxin

Journal

TOXICOLOGY
Volume 329, Issue -, Pages 60-72

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.tox.2015.01.004

Keywords

Autophagy; YTX; mTOR; LC3; TfR

Funding

  1. CDTI and Technological Funds
  2. Ministerio de Economia y Competitividad [AGL2009-13581-C02-01, AGL2012-40185-C02-01]
  3. Conselleria de Cultura, Educacion e Ordenacion Universitaria [GRC2013-016]
  4. Axencia Galega de Innovacion, Spain [ITC-20133020 SINTOX, IN852A 2013/16-3 MYTIGAL]
  5. CDTI under ISIP Programme, Spain [IDI-20130304 APTAFOOD]
  6. European Union [265409 muAQUA, 315285 CIGUATOOLS, 312184 PHARMASEA]
  7. Subprograma de Formacion de Personal Investigador, Spain [AGL2009-13581-C02-01]

Ask authors/readers for more resources

Understanding the mechanism of action of the yessotoxin (YTX) is crucial since this drug has potential pharmacological effects in allergic processes, tumor proliferation and neurodegenerative diseases. It has been described that YTX activates apoptosis after 24 h of treatment, while after 48 h of incubation with the toxin a decrease in cell viability corresponding to cellular differentiation or non-apoptotic cell death was observed. In this paper, these processes were extensively studied by using the erythroleukemia K-562 cell line. On one hand, events of K-562 cell differentiation into erythrocytes after YTX treatment were studied using hemin as positive control of cell differentiation. Cell differentiation was studied through the cyclic nucleotide response element binding (phospho-CREB) and the transferrin receptor (TfR) expression. On the other hand, using rapamycin as positive control, autophagic hallmarks, as non-apoptotic cell death, were studied after toxin exposure. In this case, the mechanistic target of rapamycin (mTOR) and light chain 3B (LC3B) levels were measured to check autophagy activation. The results showed that cell differentiation was not occurring after 48 h of toxin incubation while at this time the autophagy was triggered. Furthermore after 24 h of toxin treatment none of these processes were activated. In addition, the role of the type 4A phosphodiesterase (PDE4A), the intracellular target of YTX, was checked. PDE4A-silencing experiments showed different regulation steps of PDE4A in the autophagic processes triggered either by traditional compounds or YTX. In summary, after 48 h YTX treatment PDE4A-dependent autophagy, as non-apoptotic programmed cell death, is activated. (C) 2015 The Authors. Published by Elsevier Ireland Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available