4.6 Article

Influence of chirality using Mn(III) salen complexes on DNA binding and antioxidant activity

Journal

ORGANIC & BIOMOLECULAR CHEMISTRY
Volume 8, Issue 19, Pages 4297-4307

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0ob00010h

Keywords

-

Funding

  1. Council of Scientific Industrial Research (CSIR)

Ask authors/readers for more resources

Chiral Mn(m) salen complexes S-1, R-1, S-2, R-2, S-3 and R-3 derived from the respective chiral salen ligands, viz., (IS,2S)-N,N'-bis-[3-tert-butyl-5-chloromethyl-salicylidine]-1,2-cyclohexanediamine S-1'/(1R,2R)-N,N'-bis-[3-tert-butyl-5-chloromethyl-salicylidine]-1,2-cyclohexanediamine R-1'/(1S,2S)-N,N'-bis-[3-tert-butyl-5-N,N'N'triethylaminomethyl-salicylidine]-1,2-cyclohexanediamine dichloride S-2'/(l R,2R)-N,N'-bis-[3-tert-butyl-5-N,N'N'triethylaminomethyl-salicylidine]-1,2-cyclohexanediamine dichloride R-2'/(1S,2S)-N,N'-bis-[3,5-di-tert-butylsalicylidene]-1,2-cyclohexanediamine S-3' and (1R,2R)-N,N'-bis-[3,5-di-tert-butyl-salicylidene]-1,2-cyclohexanediamine R-3', were synthesized. Characterization of the complexes was done by microanalysis, IR, LC-MS, UV-vis. and circular dichroism (CD) spectroscopy. Binding of these complexes with calf thymus DNA (CT-DNA) was studied by absorption spectroscopy, competitive binding study, viscosity measurements, circular dichroism measurements, thermal denaturation study and observation of their different antioxidant activities. Among all the complexes used, the best result in terms of binding constant (intercalative) (130.4 x 10(4)) was achieved with the complex S-1 by spectroscopic titration. The complex S-1 showed strong antioxidant activity as well.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available