4.7 Article

Design of progressively folding thin-walled tubular components using compliant mechanism synthesis

Journal

THIN-WALLED STRUCTURES
Volume 95, Issue -, Pages 208-220

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2015.06.010

Keywords

Thin-walled square tubes; Progressive buckling; Compliant mechanisms; Topometry design; Structural optimization; Hybrid cellular automata

Funding

  1. Honda RD Americas

Ask authors/readers for more resources

This work introduces a design method for the progressive collapse of thin-walled tubular components under axial and oblique impacts. The proposed design method follows the principles of topometry optimization for compliant mechanism design in which the output port location and direction determine the folding (collapse) mode. In this work, the output ports are located near the impact end with a direction that is perpendicular to the component's longitudinal axis. The topometry optimization is achieved with the use of hybrid cellular automata for thin-wall structures. The result is a complex enforced buckle zone design that acts as a triggering mechanism to (a) initiate a specific collapse mode from the impact end, (b) stabilize the collapse process, and (c) reduce the peak force. The enforced buckle zone in the end portion of the tube also helps to avoid or delay the onset of global bending during an oblique impact with load angles higher than a critical value, which otherwise adversely affects the structure's capacity for load-carrying and energy absorption. The proposed design method has the potential to dramatically improve thin-walled component crashworthiness. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available