4.6 Article

In situ characterization of an optical cavity using atomic light shift

Journal

OPTICS LETTERS
Volume 35, Issue 22, Pages 3769-3771

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OL.35.003769

Keywords

-

Categories

Funding

  1. Direction Generale de l'Armement
  2. Institut Francilien de Recherche sur les Atomes Froids
  3. European Science Foundation
  4. European Union (EU)
  5. Marie Curie Intra-European Fellowship

Ask authors/readers for more resources

We report the precise characterization of the optical potential obtained by injecting a distributed-feedback erbium-doped fiber laser at 1560 nm to the transverse modes of a folded optical cavity. The optical potential was mapped in situ using cold rubidium atoms, whose potential energy was spectrally resolved thanks to the strong differential light shift induced by the 1560 nm laser on the two levels of the probe transition. The optical potential obtained in the cavity is suitable for trapping rubidium atoms and eventually to achieve all-optical Bose-Einstein condensation directly in the resonator. (C) 2010 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Multidisciplinary Sciences

Accurate measurement of the Sagnac effect for matter waves

Romain Gautier, Mohamed Guessoum, Leonid A. Sidorenkov, Quentin Bouton, Arnaud Landragin, Remi Geiger

Summary: The Sagnac effect, which causes a phase shift proportional to the physical area enclosed and the rotation rate of the frame in a rotating interferometer, has played a crucial role in the development of the theory of relativity and precision optical interferometers. This study accurately tests the Sagnac effect for matter waves using a Cesium atom interferometer, demonstrating agreement with theoretical predictions at an accuracy level of 25 parts per million. In addition to its significance in fundamental physics, this work also has practical applications in seismology and geodesy.

SCIENCE ADVANCES (2022)

Article Multidisciplinary Sciences

Cold-atom sources for the Matter-wave laser Interferometric Gravitation Antenna (MIGA)

Quentin Beaufils, Leonid A. Sidorenkov, Pierre Lebegue, Bertrand Venon, David Holleville, Laurent Volodimer, Michel Lours, Joseph Junca, Xinhao Zou, Andrea Bertoldi, Marco Prevedelli, Dylan O. Sabulsky, Philippe Bouyer, Arnaud Landragin, Benjamin Canuel, Remi Geiger

Summary: The MIGA instrument is an underground device using cold-atom interferometry for precision gravity measurements. It serves as a prototype for gravitational wave detectors and consists of three spatially separated interferometers driven by two counter-propagating lasers. It allows for gravity gradient measurements along a 150-meter baseline.

SCIENTIFIC REPORTS (2022)

Article Multidisciplinary Sciences

Tracking the vector acceleration with a hybrid quantum accelerometer triad

Simon Templier, Pierrick Cheiney, Quentin d'Armagnac de Castanet, Baptiste Gouraud, Henri Porte, Fabien Napolitano, Philippe Bouyer, Baptiste Battelier, Brynle Barrett

Summary: Accurate acceleration tracking remains a challenge, and cold atom-based quantum inertial sensors offer high-precision measurements. This study presents the first hybrid three-axis accelerometer that utilizes quantum advantage to measure the full acceleration vector. It tracks the acceleration vector over long time scales with higher stability and accuracy, paving the way for future inertial navigation units.

SCIENCE ADVANCES (2022)

Review Quantum Science & Technology

Cold atoms in space: community workshop summary and proposed road-map

Ivan Alonso, Cristiano Alpigiani, Brett Altschul, Henrique Araujo, Gianluigi Arduini, Jan Arlt, Leonardo Badurina, Antun Balaz, Satvika Bandarupally, Barry C. Barish, Michele Barone, Michele Barsanti, Steven Bass, Angelo Bassi, Baptiste Battelier, Charles F. A. Baynham, Quentin Beaufils, Joel Berge, Jose Bernabeu, Andrea Bertoldi, Robert Bingham, Sebastien Bize, Diego Blas, Kai Bongs, Philippe Bouyer, Carla Braitenberg, Christian Brand, Claus Braxmaier, Alexandre Bresson, Oliver Buchmueller, Dmitry Budker, Luis Bugalho, Sergey Burdin, Luigi Cacciapuoti, Simone Callegari, Xavier Calmet, Davide Calonico, Benjamin Canuel, Laurentiu-Ioan Caramete, Olivier Carraz, Donatella Cassettari, Pratik Chakraborty, Swapan Chattopadhyay, Upasna Chauhan, Xuzong Chen, Yu-Ao Chen, Maria Luisa Chiofalo, Jonathon Coleman, Robin Corgier, J. P. Cotter, A. Michael Cruise, Yanou Cui, Gavin Davies, Albert De Roeck, Marcel Demarteau, Andrei Derevianko, Marco Di Clemente, Goran S. Djordjevic, Sandro Donadi, Olivier Dore, Peter Dornan, Michael Doser, Giannis Drougakis, Jacob Dunningham, Sajan Easo, Joshua Eby, Gedminas Elertas, John Ellis, David Evans, Pandora Examilioti, Pavel Fadeev, Mattia Fani, Farida Fassi, Marco Fattori, Michael A. Fedderke, Daniel Felea, Chen-Hao Feng, Jorge Ferreras, Robert Flack, Victor V. Flambaum, Rene Forsberg, Mark Fromhold, Naceur Gaaloul, Barry M. Garraway, Maria Georgousi, Andrew Geraci, Kurt Gibble, Valerie Gibson, Patrick Gill, GianF Giudice, Jon Goldwin, Oliver Gould, Oleg Grachov, Peter W. Graham, Dario Grasso, PaulF Griffin, Christine Guerlin, Ratnesh K. Gupta, Martin Haehnelt, Leonie Hawkins, Aurelien Hees, Victoria A. Henderson, Waldemar Herr, Sven Herrmann, Thomas Hird, Richard Hobson, Vincent Hock, Jason M. Hogan, Bodil Holst, Michael Holynski, Ulf Israelsson, Peter Jeglic, Philippe Jetzer, Gediminas Juzeliunas, Rainer Kaltenbaek, Jernej F. Kamenik, Alex Kehagias, Teodora Kirova, Marton Kiss-Toth, Sebastian Koke, Shimon Kolkowitz, Georgy Kornakov, Tim Kovachy, Markus Krutzik, Mukesh Kumar, Pradeep Kumar, Claus Lammerzahl, Greg Landsberg, Christophe Le Poncin-Lafitte, David R. Leibrandt, Thomas Leveque, Marek Lewicki, Rui Li, Anna Lipniacka, Christian Lisdat, Mia Liu, J. L. Lopez-Gonzalez, Sina Loriani, Jorma Louko, Giuseppe Gaetano Luciano, Nathan Lundblad, Steve Maddox, M. A. Mahmoud, Azadeh Maleknejad, John March-Russell, Didier Massonnet, Christopher McCabe, Matthias Meister, Tadej Meznarsic, Salvatore Micalizio, Federica Migliaccio, Peter Millington, Milan Milosevic, Jeremiah Mitchell, Gavin W. Morley, Jurgen Muller, Eamonn Murphy, Ozgur E. Mustecaplioglu, Val O'Shea, Daniel K. L. Oi, Judith Olson, Debapriya Pal, Dimitris G. Papazoglou, Elizabeth Pasatembou, Mauro Paternostro, Krzysztof Pawlowski, Emanuele Pelucchi, Franck Pereira dos Santos, Achim Peters, Igor Pikovski, Apostolos Pilaftsis, Alexandra Pinto, Marco Prevedelli, Vishnupriya Puthiya-Veettil, John Quenby, Johann Rafelski, Ernst M. Rasel, Cornelis Ravensbergen, Mirko Reguzzoni, Andrea Richaud, Isabelle Riou, Markus Rothacher, Albert Roura, Andreas Ruschhaupt, DylanO Sabulsky, Marianna Safronova, Ippocratis D. Saltas, Leonardo Salvi, Muhammed Sameed, Pandey Saurabh, Stefan Schaffer, Stephan Schiller, Manuel Schilling, Vladimir Schkolnik, Dennis Schlippert, Piet O. Schmidt, Harald Schnatz, Jean Schneider, Ulrich Schneider, Florian Schreck, Christian Schubert, Armin Shayeghi, Nathaniel Sherrill, Ian Shipsey, Carla Signorini, Rajeev Singh, Yeshpal Singh, Constantinos Skordis, Augusto Smerzi, Carlos F. Sopuerta, Fiodor Sorrentino, Paraskevas Sphicas, Yevgeny Stadnik, Petruta Stefanescu, Marco G. Tarallo, Silvia Tentindo, Guglielmo M. Tino, Jonathan N. Tinsley, Vincenza Tornatore, Philipp Treutlein, Andrea Trombettoni, Yu-Dai Tsai, Philip Tuckey, Melissa A. Uchida, Tristan Valenzuela, Mathias Van den Bossche, Ville Vaskonen, Gunjan Verma, Flavio Vetrano, Christian Vogt, Wolf von Klitzing, Pierre Waller, Reinhold Walser, Eric Wille, Jason Williams, Patrick Windpassinger, Ulrich Wittrock, Peter Wolf, Marian Woltmann, Lisa Worner, Andre Xuereb, Mohamed Yahia, Efe Yazgan, Nan Yu, Nassim Zahzam, Emmanuel Zambrini Cruzeiro, Mingsheng Zhan, Xinhao Zou, Jure Zupan, Erik Zupanic

Summary: This article summarizes the discussions from a virtual Community Workshop on Cold Atoms in Space, focusing on the current status of cold atom technologies, the potential scientific and societal opportunities of using them in space, and the necessary developments for their operation in space. It covers various cold atom technologies, such as atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. The potential applications include metrology, geodesy, and fundamental science experiments. The article also presents a draft roadmap for achieving these goals and proposes discussion with relevant communities and space agencies.

EPJ QUANTUM TECHNOLOGY (2022)

Review Multidisciplinary Sciences

A way forward for fundamental physics in space

A. Bassi, L. Cacciapuoti, S. Capozziello, S. Dell'Agnello, E. Diamanti, D. Giulini, L. Iess, P. Jetzer, S. K. Joshi, A. Landragin, C. Le Poncin-Lafitte, E. Rasel, A. Roura, C. Salomon, H. Ulbricht

Summary: Space-based research plays a crucial role in advancing our understanding of key open questions in fundamental physics. The application of cold-atom sensors and quantum technologies has revolutionized precision measurements, enabling us to measure tiny variations and test physical laws.

NPJ MICROGRAVITY (2022)

Article Quantum Science & Technology

Technology roadmap for cold-atoms based quantum inertial sensor in space

Sven Abend, Baptiste Allard, Aidan S. Arnold, Ticijana Ban, Liam Barry, Baptiste Battelier, Ahmad Bawamia, Quentin Beaufils, Simon Bernon, Andrea Bertoldi, Alexis Bonnin, Philippe Bouyer, Alexandre Bresson, Oliver S. Burrow, Benjamin Canuel, Bruno Desruelle, Giannis Drougakis, Rene Forsberg, Naceur Gaaloul, Alexandre Gauguet, Matthias Gersemann, Paul F. Griffin, Hendrik Heine, Victoria A. Henderson, Waldemar Herr, Simon Kanthak, Markus Krutzik, Maike D. Lachmann, Roland Lammegger, Werner Magnes, Gaetano Mileti, Morgan W. Mitchell, Sergio Mottini, Dimitris Papazoglou, Franck Pereira dos Santos, Achim Peters, Ernst Rasel, Erling Riis, Christian Schubert, Stephan Tobias Seidel, Guglielmo M. Tino, Mathias van den Bossche, Wolf von Klitzing, Andreas Wicht, Marcin Witkowski, Nassim Zahzam, Michal Zawada

Summary: Recent developments in quantum technology have led to the creation of a new generation of sensors that can measure inertial quantities with unprecedented sensitivity and accuracy. European laboratories have been at the forefront of this field, developing concepts and tools to operate these quantum sensors in relevant environments. The challenge now is to achieve a sufficiently high technology readiness level to provide off-the-shelf payload for future space missions.

AVS QUANTUM SCIENCE (2023)

Article Physics, Multidisciplinary

Quantitative absorption imaging: The role of incoherent multiple scattering in the saturating regime

Romain Veyron, Vincent Mancois, Jean-Baptiste Gerent, Guillaume Baclet, Philippe Bouyer, Simon Bernon

Summary: In this paper, we investigate the modification of coherent scattering processes in dense ensembles. The reduction of absorption cross section in dense Rb-87 cold atom ensembles is experimentally demonstrated and found to be linearly related to the optical density. A one-dimensional model of coherent field propagation in an ensemble of quantum two-level systems, which incorporates multiple scattering contribution, is proposed to explain this reduction. The role of incoherent scattering on the modification of the optical response of dense ensembles is highlighted, and a generalization of the Beer-Lambert law is presented. This result allows for quantitative and absolute in situ absorption imaging for any effective two-level system ensemble.

PHYSICAL REVIEW RESEARCH (2022)

Article Optics

Effective two-level approximation of a multilevel system driven by coherent and incoherent fields

R. Veyron, V Mancois, J. B. Gerent, G. Baclet, P. Bouyer, S. Bernon

Summary: Numerical simulation of multiple scattering is commonly used to predict the optical response of dense ensembles, but current simulations are limited by computational complexity and ignore the internal structure of atoms. This study proposes a method to overcome these limitations by using an effective two-level system that accurately reproduces scattering properties in any saturation regime, and validates the model under various experimentally realistic conditions.

PHYSICAL REVIEW A (2022)

Article Optics

Compact differential gravimeter at the quantum projection-noise limit

Camille Janvier, Vincent Menoret, Bruno Desruelle, Sebastien Merlet, Arnaud Landragin, Franck Pereira dos Santos

Summary: Atom interferometry offers new perspectives for geophysics and inertial sensing. We present the industrial prototype of a quantum-based instrument capable of measuring both gravitational acceleration and its vertical gradient simultaneously. This instrument plays an important role in practical applications and provides potential for development in various fields.

PHYSICAL REVIEW A (2022)

No Data Available