4.6 Article

Nonlinear structured illumination microscopy by surface plasmon enhanced stimulated emission depletion

Journal

OPTICS EXPRESS
Volume 19, Issue 24, Pages 24783-24794

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.19.024783

Keywords

-

Categories

Funding

  1. Technology Research Initiative Fund of the State of Arizona

Ask authors/readers for more resources

Nonlinear structured illumination microscopy (SIM) in theory has unlimited resolution over a full field of view. However under a realistic signal-to-noise ratio and a limited photon budget, the performance of nonlinear SIM strongly depends on the behavior of the nonlinear effect. Saturated SIM (SSIM) is not ideal in biological applications due to its strong photobleaching. Stimulated emission depletion (STED) SIM will have high sensitivity, higher resolution and less photo toxicity than SSIM. However, the laser power necessary to support a strong full-field STED effect is not attainable with current laser technology. We experimentally proved that surface plasmon resonance enhances (SPR) near surface STED effect by a factor of 8, and therefore STED-SIM is feasible in the total internal reflection microscopy mode with SPR enhancement. Simulation analysis predicts that SPR enhanced 2D STED is strong enough for nonlinear SIM to achieve high-speed imaging at 30-nm resolution and single molecule sensitivity. The STED-SIM superresolution microscopy method would provide a solution for observing single molecule processes in vitro or on the basal membrane of live cells. (C) 2011 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available