4.6 Article

Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy

Journal

OPTICS EXPRESS
Volume 19, Issue 12, Pages 11202-11212

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.19.011202

Keywords

-

Categories

Funding

  1. ASD(RD) [FA8721-05-C-0002]
  2. NSF MRI
  3. NSF SGER
  4. Boston University Photonics Center
  5. Army Research Laboratories
  6. MIT Lincoln Laboratory
  7. Direct For Mathematical & Physical Scien
  8. Division Of Materials Research [0821450] Funding Source: National Science Foundation

Ask authors/readers for more resources

Our recent work has showed that diffractively coupled nanoplasmonic arrays for Fourier transform infrared (FTIR) microspectroscopy can enhance the Amide I protein vibrational stretch by up to 10(5) times as compared to plain substrates. In this work we consider computationally the impact of a microscope objective illumination cone on array performance. We derive an approach for computing angular-and spatially-averaged reflectance for various numerical aperture (NA) objectives. We then use this approach to show that arrays that are perfectly optimized for normal incidence undergo significant response degradation even at modest NAs, whereas arrays that are slightly detuned from the perfect grating condition at normal incidence irradiation exhibit only a slight drop in performance when analyzed with a microscope objective. Our simulation results are in good agreement with microscope measurements of experimentally optimized periodic nanoplasmonic arrays. (C) 2011 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available