4.6 Article

Phase stabilization in transparent Lu2O3:Eu ceramics by lattice expansion

Journal

OPTICAL MATERIALS
Volume 35, Issue 1, Pages 74-78

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.optmat.2012.07.005

Keywords

Transparent ceramic; Lutetium oxide; Gadolinium oxide; Densification; Sinter-HIP

Funding

  1. U.S. Department of Energy
  2. Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
  3. US DOE, Office of NNSA, Enhanced Surveillance Subprogram [LLNL-JRNL-559892]

Ask authors/readers for more resources

Gadolinium lutetium oxide transparent ceramics doped with europium (Gd,Lu)(2)O-3:Eu were fabricated via vacuum sintering and hot isostatic pressing (HIP). Nano-scale starting powder with the composition GdxLu19-xEu0.1O3 (x = 0, 0.3, 0.6, 0.9, 1.0, and 1.1) were uniaxially pressed and sintered under high vacuum at 1625 degrees C to obtain similar to 97% dense structures with closed porosity. Sintered compacts were then subjected to 200 MPa argon gas at temperatures between 1750 and 1900 degrees C to reach full density. It was observed that a small portion of the Eu3+ ions were exsolved from the Lu2O3 cubic crystal lattice and concentrated at the grain boundaries, where they precipitated into a secondary monoclinic phase creating optical scattering defects. Addition of Gd3+ ions into the Lu2O3 cubic lattice formed the solid solution (Gd,Lu)(2)O-3:Eu and stretched the lattice parameter allowing the larger Eu3+ ions to stay in solid solution, reducing the secondary phase and improving the transparency of the ceramics. Excess gadolinium, however, resulted in a complete phase transformation to monoclinic at pressures and temperatures sufficient for densification. Light yield performance was measured and all samples show equal amounts of the characteristic Eu3+ luminescence, indicating gadolinium addition had no adverse effect. This material has potential to improve the performance of high energy radiography devices. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available