4.5 Article

Anti-invasive effects of decitabine, a DNA methyltransferase inhibitor, through tightening of tight junctions and inhibition of matrix metalloproteinase activities in AGS human gastric carcinoma cells

Journal

ONCOLOGY REPORTS
Volume 28, Issue 3, Pages 1043-1050

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/or.2012.1858

Keywords

decitabine; invasion; tight junctions; MMPs; PI3K/Akt

Categories

Funding

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF)
  2. Ministry of Education, Science, and Technology, Republic of Korea [2010-0001730]

Ask authors/readers for more resources

The DNA methyltransferase inhibitor decitabine, 5-Aza-2'-deoxycytidine, possesses anti-metabolic and anticancer activities in various cancer cells. However, the biochemical mechanisms underlying decitabine-induced inhibition of invasiveness and metastasis have not been thoroughly studied. In this study, we investigated the effect of decitabine on the correlation between tightening of tight junctions (TJs) and anti-invasive activity in AGS human gastric cancer cells. Our data indicated that the inhibitory effects of decitabine on cell motility and invasiveness were associated with increased tightness of the TJ, which was demonstrated by an increase in transepithelial electrical resistance (TER). Immunoblotting results indicated that decitabine repressed the levels of the claudin proteins, major components of TJs that play a key role in the control and selectivity of paracellular transport. Furthermore, matrix metalloproteinase (MMP)-2 and -9 activity in the AGS cells was dose-dependently inhibited by treatment with decitabine, and this was correlated with a decrease in mRNA and protein expression. In addition, these effects were related to inactivation of the phosphoinositide 3-kinase (PI3K)/Akt pathway in AGS cells. In conclusion, this study suggests that TJs and MMPs are critical targets of decitabine-induced inhibition of invasiveness in AGS human gastric cancer cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available