4.7 Article

Underwater autonomous manipulation for intervention missions AUVs

Journal

OCEAN ENGINEERING
Volume 36, Issue 1, Pages 15-23

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.oceaneng.2008.08.007

Keywords

Underwater intervention; Autonomous manipulation; Localization; Tracking; Teleprogramming; AUV; ROV

Funding

  1. ONR [N00014-97-1-0961, N00014-00-1-0629, N00014-02-1-0840, N00014-03-1-0969, N00014-04-1-0751]

Ask authors/readers for more resources

Many underwater intervention tasks are today performed using manned submersibles or remotely operated vehicles in teleoperation mode. Autonomous underwater vehicles are mostly employed in survey applications. In fact, the low bandwidth and significant time delay inherent in acoustic subsea communications represent a considerable obstacle to remotely operate a manipulation system, making it impossible for remote controllers to react to problems in a timely manner. Nevertheless, vehicles with no physical link and with no human occupants permit intervention in dangerous areas, such as in deep ocean, under ice, in missions to retrieve hazardous objects, or in classified areas. The key element in underwater intervention performed with autonomous vehicles is autonomous manipulation. This is a challenging technology milestone, which refers to the capability of a robot system that performs intervention tasks requiring physical contacts with unstructured environments without continuous human supervision. Today, only few AUVs are equipped with manipulators. SAUVIM (Semi Autonomous Underwater Vehicle for Intervention Mission, University of Hawaii) is one of the first underwater vehicle capable of autonomous manipulation. This paper presents the solutions chosen within the development of the system in order to address the problems intrinsic to autonomous underwater manipulation. In the proposed approach, the most noticeable aspect is the increase in the level of information transferred between the system and the human supervisor. We describe one of the first trials of autonomous intervention performed by SAUVIM in the oceanic environment. To the best knowledge of the authors, no sea trials in underwater autonomous manipulation have been presented in the literature. The presented operation is an underwater recovery mission, which consists in a sequence of autonomous tasks finalized to search for the target and to securely hook a cable to it in order to bring the target to the surface. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available