4.7 Article

Post-synthetic modification of MIL-101(Cr) with pyridine for high-performance liquid chromatographic separation of tocopherols

Journal

TALANTA
Volume 137, Issue -, Pages 136-142

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.talanta.2015.01.022

Keywords

Post-synthetic modification; Pyridine-grafted MIL-101(Cr); High-performance liquid chromatography; Tocopherols

Funding

  1. National Basic Research Program of China [2015CB932001]
  2. National Natural Science Foundation of China [21305071]
  3. Tianjin Natural Science Foundation [14JCZDJC37600, 14JCQNJC06600]
  4. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

Effective separation of tocopherols is challenging and significant due to their structural similarity and important biological role. Here we report the post-synthetic modification of metal-organic framework (MOF) MIL-101(Cr) with pyridine for high-performance liquid chromatographic (HPLC) separation of tocopherols. Baseline separation of four tocopherols was achieved on a pyridine-grafted MIL-101(Cr) packed column within 10 min using hexane/isopropanol (96:4, v/v) as the mobile phase at a flow rate of 0.5 mL min(-1). The pyridine-grafted MIL-101(Cr) packed column gave high column efficiency (85,000 plates m(-1) for delta-tocopherol) and good precision (0.2-0.3% for retention time, 1.8-3.4% for peak area, 2.6-2.7% for peak height), and also offered much better performance than unmodified MIL-101(Cr) and commercial amino-bonded silica packed column for HPLC separation of tocopherols. The results not only show the promising application of pyridine-grafted MIL-101(Cr) as a novel stationary phase for HPLC separation of tocopherols, but also reveal a facile post-modification of MOFs to expand the application of MOFs in separation sciences. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Silicon Nanodots Increase Plant Resistance against Herbivores by Simultaneously Activating Physical and Chemical Defenses

Zhenggao Xiao, Ningke Fan, Wenqing Zhu, Hai-Long Qian, Xiu-Ping Yan, Zhenyu Wang, Sergio Rasmann

Summary: The application of nanosilicon has been found to enhance plant defenses against various stresses. Silicon quantum nanodots, with their unique biological and physiochemical properties, show promise in regulating plant responses to stress. By studying maize, it was observed that the addition of Si NDs and sodium silicate effectively inhibited the growth of caterpillars and activated defense genes. Field experiments also demonstrated the potential of Si NDs in increasing maize yield. These findings suggest that Si NDs can be an effective and ecofriendly crop protection strategy in agroecosystems.

ACS NANO (2023)

Article Chemistry, Analytical

Organic Mass Cytometry Discriminating Cycle Stages of Single Cells with Small Molecular Indicators

Shu-Ting Xu, Cheng Yang, Xiu-Ping Yan

Summary: Cell cycle discrimination is crucial for studying cellular heterogeneity in single-cell analysis based on organic mass spectrometry. A robust protocol using three small molecular indicators was developed to discriminate single cells at different cycle stages in real time. This protocol successfully discriminated single cells at G0/G1, S, and G2/M stages and revealed significant heterogeneity in amino acids, nucleotides, energy metabolic intermediates, and phospholipids among cells at different cycle stages.

ANALYTICAL CHEMISTRY (2023)

Review Chemistry, Analytical

Recent Advances in Separation and Analysis of Chiral Compounds

Shu-Ting Xu, Xiu-Ping Yan, Hai-Long Qian

ANALYTICAL CHEMISTRY (2023)

Article Materials Science, Composites

Hierarchically porous polyimide aerogel fibers based on the confinement of Ti3C2Tx flakes for thermal insulation and fire retardancy

Dan Wang, Yidong Peng, Jiancheng Dong, Lei Pu, Kangqi Chang, Xiu-Ping Yan, Le Li, Yunpeng Huang, Tianxi Liu

Summary: In this study, polyimide aerogel fibers were fabricated using an in-situ polymerization method and wet-spinning technique with Ti3C2Tx flakes as pore-generating agents. These aerogel fibers showed enhanced mechanical properties, large specific surface area, excellent flame resistance, and remarkable thermal insulation performance. They can be woven into flexible textiles for practical thermal regulating applications.

COMPOSITES COMMUNICATIONS (2023)

Article Nanoscience & Nanotechnology

Infection Microenvironment-Mediated Nanoplatform for In Vivo Persistent Luminescence Imaging and Chemodynamic Antibacterial Therapy

Li-Ya Wang, Li-Jian Chen, Xu Zhao, Yan Lv, Tianxi Liu, Xiu-Ping Yan

Summary: The researchers report an activatable antimicrobial nanoplatform with ultralow-background persistent luminescent (PL) turn-on imaging and therapeutic capability. The platform utilizes chitosan as a linker to immobilize copper ions on the surface of persistent luminescent nanoparticles (PLNPs) to fabricate PLNPs-CS-Cu2+. The PL emission of PLNPs is quenched by Cu2+ under physiological conditions but recovered due to the conversion of Cu2+ into Cu+ by high glutathione (GSH) levels at the infection site. The as-prepared antibacterial nanoplatform shows promise for highly sensitive persistent luminescent imaging and simultaneous treatment of bacterial infection.

ACS APPLIED NANO MATERIALS (2023)

Article Nanoscience & Nanotechnology

Visible-Light Transparent, Ultrastretchable, and Self-Healable Semicrystalline Fluorinated Ionogels for Underwater Strain Sensing

Jingxiao Chen, Yufeng Wang, Le Li, Yue-E Miao, Xu Zhao, Xiu-Ping Yan, Chao Zhang, Wei Feng, Tianxi Liu

Summary: In this study, an ultrastretchable fluorinated ionogel with high transparency and waterproofness is prepared. The ionogel exhibits stable cross-linking structures, high mechanical elasticity, and self-healing capabilities. It also demonstrates excellent stretchability, mechanical toughness, and underwater strain-sensing performances. This work provides a method for obtaining waterproof ionogel elastomers for next-generation underwater sensors and communications.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Nanoscience & Nanotechnology

Cicada-Wing-Inspired Highly Sensitive Tactile Sensors Based on Elastic Carbon Foam with Nanotextured Surfaces

Kangqi Chang, Zhenzhong Wu, Jian Meng, Minhao Guo, Xiu-Ping Yan, Hai-Long Qian, Piming Ma, Jianhua Zhao, Fangneng Wang, Yunpeng Huang, Tianxi Liu

Summary: Inspired by the nanotopography of cicada wings, a highly sensitive tactile sensor was fabricated by nanotexturing polyaniline nanoneedles on a conductive and elastic carbon skeleton. The sensor exhibited ultrahigh sensitivity, fast response/recovery abilities, and reproducible sensing performance, making it capable of distinguishing motions in a wide pressure range, detecting spatial pressure distribution, and monitoring various gestures in a wireless manner. These excellent performances demonstrate the great potential of nature-inspired tactile sensors for practical human motion monitoring and artificial intelligence applications.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Applied

Silk fibroin-based colorimetric microneedle patch for rapid detection of spoilage in packaged salmon samples

Jiang-Yue Wang, Li-Jian Chen, Xu Zhao, Xiu-Ping Yan

Summary: A pH-responsive colorimetric microneedle (MN) patch made from bromothymol blue (BTB) and silk fibroin meth acryloyl (SilMA) was developed for sensing salmon spoilage. The MN patch could extract tissue fluids from salmon and display color changes based on the pH variation caused by the increase of total volatile basic nitrogen. This method allows rapid determination of salmon spoilage and can be analyzed nondestructively on a smartphone.

FOOD CHEMISTRY (2023)

Article Biochemistry & Molecular Biology

Enhanced flame retardancy and toughness of eco-friendly polyhydroxyalkanoate/bentonite composites based on in situ intercalation of P-N-containing hyperbranched macromolecules

Pengwu Xu, Gaopeng Qi, Dongxuan Lv, Deyu Niu, Weijun Yang, Huiyu Bai, Xiuping Yan, Xu Zhao, Piming Ma

Summary: In this study, an in situ polymerization method was employed to intercalate P-N-containing hyperbranched macromolecules (HBM) among BNT layers (HBM-B) to improve the flame retardancy and mechanical properties of PHA. The LOI of the PHA/HBM-B composite reached 27.6% when the mass ratio of HBM to BNT was 75/25. When the content of HBM-B reached 15 wt%, the LOI of PHA-Based composites reached 29.6% and achieved a UL-94 rating of V-0, meeting the standard of flame-retardant material.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2023)

Article Engineering, Environmental

Reductive dechlorination of chlorinated ethenes by ball milled and mechanochemically sulfidated microscale zero valent iron: A comparative study

Shuyan Wu, Shichao Cai, Fengyang Qin, Feng He, Tianxi Liu, Xiuping Yan, Zhenyu Wang

Summary: Ball milling is effective in activating and reducing the size of microscale zero valent iron (mZVI) and sulfidating mZVI mechanochemically. However, there are differences in the interaction between chlorinated ethenes (CEs) and ball milled mZVI (mZVIbm) and mechanochemically sulfidated mZVI (S-mZVIbm) that are not well understood. This study found that simple ball milling exposed active Fe0 sites, while mechanochemical sulfidation decreased Fe0 sites and increased S2 sites. The sulfidation process enhanced the reactivity of TCE dechlorination the most, followed by PCE and 1,1-DCE, but reduced the reactivity of trans-DCE, cis-DCE, and VC compared to simple ball milling. Sulfidation also improved the electron efficiency of CE dechlorination, except for cis-DCE and VC. The kSA of cis-DCE, VC, and trans-DCE dechlorination positively correlated with the sulfide content.

JOURNAL OF HAZARDOUS MATERIALS (2023)

Article Nanoscience & Nanotechnology

Multifunctionalized Tumor-Triggered Targeting Theranostic Nanoparticles as a Precision NIR Imaging-Guided Nanoplatform for Photothermal/Photodynamic Therapy

Xu Zhao, Kang-Kang Zhang, Li-Jian Chen, Zhen-Yu Wang, Xiu-Ping Yan

Summary: We design and synthesize an acid-activated near-infrared probe to construct an intelligent theranostic nanoplatform for tumor-targeting image-guided photothermal and photodynamic therapy. The nanoplatform combines precise tumor targeting ability, specific imaging with a high signal-to-noise ratio, and excellent in vivo antitumor activity.

ACS APPLIED NANO MATERIALS (2023)

Article Chemistry, Multidisciplinary

Folic Acid-Modified Nanoprobe for In Vivo-Targeted Persistent Luminescence Imaging and pH-Responsive Antibiotic Therapy of Bacterial Infection

Li-Ya Wang, Li-Xia Yan, Xu Zhao, Li-Jian Chen, Xiu-Ping Yan

Summary: This study developed a pH-responsive theragnostic nanoplatform for targeted imaging and local drug release at the bacterial infection site. The nanoplatform consists of core-shell structure with persistent luminescence nanoparticles (PLNPs) as the core and zeolitic imidazolate framework-8 (ZIF-8) as the shell loaded with antibiotics. The nanoparticles were further conjugated with folic acid (FA) to achieve autofluorescence-free targeted imaging at the infection site. The acidic microenvironment at the bacterial infection site enables ZIF-8 to decompose and release drugs, improving the efficacy of bacterial infection treatment.

CHEMNANOMAT (2023)

Article Nanoscience & Nanotechnology

pH-Responsive and Chemiluminescent Carboxyethyl Chitosan Nanocarriers for Intelligent Targeted Phototherapy Sterilization

Xu Zhao, Ming-Yue Yin, Tian-Yue Gu, Xue-Mei Gao, Li-Jian Chen, Zhen-Yu Wang, Xiu-Ping Yan

Summary: This study reported a pH-/H2O2-activated and self-luminous nanosphere for intelligent bacteria-targeting and self-reported imaging-guided precision phototherapy sterilization. The nanosphere, formed by self-assembly of CMC-PC-N with CPPO, can rapidly release CPPO in the bacterial acidic microenvironment. The released CPPO can activate the fluorescence of the porphyrin for self-report imaging and achieve efficient phototherapy sterilization under external irradiation.

ACS APPLIED NANO MATERIALS (2023)

Article Chemistry, Analytical

A Glutathione-Responsive Luminescence Sensor Based on Dual-Emissive Persistent Luminescent Nanoparticles for Ratiometric Tumor Imaging

Xue-Mei Gao, Tian-Yue Gu, Ke-Lin Chen, Xu Zhao, Xiu-Ping Yan

Summary: In this study, an intelligent luminescence ratiometric sensor based on ultra-small dual-emissive PLNP is reported for precise tumor-targeted imaging. The PLNP-Mal@Cy5.5 sensor can achieve long-term retention and specificity imaging by detecting the change of I-708/I-501.

ANALYSIS & SENSING (2023)

Article Nanoscience & Nanotechnology

Cicada-Wing-Inspired Highly Sensitive Tactile Sensors Based on Elastic Carbon Foam with Nanotextured Surfaces

Kangqi Chang, Zhenzhong Wu, Jian Meng, Minhao Guo, Xiu-Ping Yan, Hai-Long Qian, Piming Ma, Jianhua Zhao, Fangneng Wang, Yunpeng Huang, Tianxi Liu

Summary: We propose a simple strategy to fabricate a highly sensitive tactile sensor by nanotexturing erected polyaniline (PANI) nanoneedles on a conductive and elastic three-dimensional (3D) carbon skeleton. The developed sensor exhibits ultrahigh sensitivity, fast response/recovery abilities, and reproducible sensing performance, making it capable of distinguishing motions, detecting spatial pressure distribution, and monitoring various gestures wirelessly.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Analytical

Enhancing electrochemiluminescence by modifying Fe3CuO4 and CdS@ZnS: A novel ECL sensor for highly sensitive detection of permethrin

Qian Wu, Li Tian, Xiangyu Shan, Huiling Li, Chao Li, Juan Lu

Summary: A novel ECL sensor was developed by modifying Fe3CuO4-Ru(bpy)3+ and GO-CdS@ZnS on the electrode for the detection of permethrin. The sensor exhibited high sensitivity and a wide detection range.

TALANTA (2024)

Article Chemistry, Analytical

Ag+-stabilized DNA triplex coupled with catalytic hairpin assembly and CRISPR/Cas12a amplifications for sensitive metallothionein assay

Tingting Gong, Lei Liao, Bingying Jiang, Ruo Yuan, Yun Xiang

Summary: In this study, a fluorescent biosensing system for high sensitivity detection of MT was established using a new Ag+-stabilized DNA triplex probe (Ag+-SDTP) combined with catalytic hairpin assembly (CHA) and CRISPR/Cas12a signal enhancements. The sensing method is able to selectively detect MT from other non-specific molecules and can achieve low level detection of MT in diluted human serums, demonstrating its potential for monitoring disease-specific MT biomarker at trace levels.

TALANTA (2024)

Article Chemistry, Analytical

Boron quantification using ion chromatography tandem triple quadrupole mass spectrometry. Application to retention analysis in boron-treated wood

Estrella Sanz Rodriguez, Kyra Wood, Paul R. Haddad, Brett Paull

Summary: This study presents a simple, rapid, and reliable method for determining boron in aqueous solutions using suppressed ion chromatography coupled to electrospray ionisation-triple quadrupole mass spectrometry. The method achieved a low limit of detection and demonstrated excellent analytical performance.

TALANTA (2024)

Article Chemistry, Analytical

Innovative SALDI mass spectrometry analysis for Alzheimer's disease synthetic peptides detection

Aline Cournut, Paul Moustiez, Yannick Coffinier, Christine Enjalbal, Claudia Bich

Summary: Alzheimer's disease is a major cause of senile dementia and is characterized by the aggregation of neurofibrillary tangles and amyloid plaques in the brain. The A beta 1-42 peptide is considered the primary cause of neurotoxicity due to its insolubility and subsequent aggregation. A beta 1-42 and A beta 1-40 have been identified as relevant biomarkers for AD diagnosis, and SurfaceAssisted Laser Desorption/Ionization Mass Spectrometry (SALDI-MS) was used to monitor the A beta 1-42/A beta 1-40 ratio without prior sample treatment.

TALANTA (2024)

Article Chemistry, Analytical

Deep eutectic solvents for the determination of endocrine disrupting chemicals

Dotse Selali Chormey, Buse Tugba Zaman, Tulay Borahan Kustanto, Sezin Erarpat Bodur, Suleyman Bodur, Elif Ozturk Er, Sezgin Bakirdere

Summary: This review provides an overview of the harmful effects of endocrine disrupting chemicals (EDCs) on human health and introduces the methods for analyzing EDCs. Recent research has focused on using green chemicals, such as deep eutectic solvents (DESs), for microextraction to ensure environmental safety.

TALANTA (2024)

Article Chemistry, Analytical

Nanopore-related cellular death through cytoskeleton depolymerization by drug-induced ROS

Yan Zhang, Renfeng Xu, Jingjing Wu, Zhenghong Zhang, Yuhuang Wang, Hongqin Yang, Sheng Zhang

Summary: This study visualized the pore-like structures in prostate cancer cell membranes after treatment with the anticancer drug paclitaxel, demonstrating its mechanism of action related to oxidative damage.

TALANTA (2024)

Article Chemistry, Analytical

CRISPR-empowered electrochemical biosensor for target amplification-free and sensitive detection of miRNA

Chihong Ma, Qin Zhou, Jinjin Shi, Hua Gao, Di Huang, Huimin Xue, Han Wang, Zhenzhong Zhang, Sen Yang, Junli Zhang, Kaixiang Zhang

Summary: We developed a CRISPR-empowered electrochemical biosensor, named PER-E-CRISPR, for amplification-free and sensitive detection of miR-21. The biosensor combines the advantages of CRISPR/Cas13a and primer exchange reaction (PER) for target amplification. Under optimized conditions, the PER-E-CRISPR assay exhibits a linear range from 10-13 to 10-7 M and a limit of detection of 30.2 fM. The biosensor shows excellent performance in actual plasma, indicating promising prospects for miRNA detection in molecular diagnosis.

TALANTA (2024)

Article Chemistry, Analytical

Application and evaluation of molecular docking for aptamer and small molecular interaction- A case study with tetracycline antibiotics

Gang Liang, Jie Zhao, Yufei Gao, Tao Xie, Jianhui Zhen, Ligang Pan, Wenwen Gong

Summary: Molecular docking (MD) analysis is widely used for studying the interaction between aptamers and small molecules. This study established steady-state aptamers of tertiary structures (SATS) using specific aptamers of tetracycline antibiotics as docking models. Molecular docking results revealed multiple binding sites in the SATS of aptamers, with significant variations in binding free energy (BFE) and docking score (DS). The study also proposed a method for MD analysis based on SATS, providing insights into binding mode and predicting binding sites.

TALANTA (2024)

Article Chemistry, Analytical

Highly bright stable organic radicals encapsulated by amphiphilic polypeptide for efficient near-infrared phototheranostics

Yixuan Xu, Changchang Teng, Huiping Dang, Dalong Yin, Lifeng Yan

Summary: Stable organic radical molecules with high NIR fluorescence quantum efficiency have been synthesized and encapsulated into nanoparticles, which show great potential for both photodynamic therapy (PDT) and photothermal therapy (PTT) of tumors.

TALANTA (2024)

Article Chemistry, Analytical

The construction of highly selective surface molecularly imprinted polymers based on Cu(II) coordination for the detection of bisphenol A

Yu Su, Dandan Yang, Yanjie Wang, Jie Ding, Lan Ding, Daqian Song

Summary: In this study, a highly selective molecularly imprinted polymer Cu-MIPs@CS was designed and synthesized for bisphenol A (BPA). Cu-MIPs@CS showed significantly enhanced imprinting factor and selective factor towards BPA compared to MIPs@CS. It also exhibited superior discrimination ability between BPA and its structural analogue. Additionally, Cu-MIPs@CS were successfully applied as a solid phase extraction adsorbent for the determination of BPA in drinking water samples.

TALANTA (2024)

Article Chemistry, Analytical

A simple joint detection platform for high-throughput single-cell heterogeneity screening

Yi Qiao, Qiongdan Zhang, Yukun He, Tianguang Cheng, Jing Tu

Summary: Single cell heterogeneity plays an important role in many biological phenomena, and distinguishing cells with specific mutations is beneficial for clinical diagnosis and drug screening. This study introduces a gel plate platform that can distinguish cell types based on their phenotypes, with low equipment requirement. The gel platform has potential in point-of-care circumstances and single-cell stimulation responses that prioritize efficiency and simplicity.

TALANTA (2024)

Article Chemistry, Analytical

Nanotechnology-based analytical techniques for the detection of contaminants in aquatic products

Chengke Wang, Shuyang Sun, Ping Wang, Huawei Zhao, Wenling Li

Summary: The food safety of aquatic products is a global concern. Nanotechnology-based analyses have advantages in the detection of bacteria, metal ions, and small molecule contaminants. This review summarizes the recent advances in biosensing strategies for aquatic products and highlights the application of nanomaterials, lateral flow-based biosensors, surface-enhanced Raman scattering, microfluidic chips, and molecular imprinting technologies.

TALANTA (2024)

Article Chemistry, Analytical

A sensitive off-on electrochemiluminescence DNA sensor based on signal cascade amplification circuit and distance-dependent energy transfer

Liping Zhu, Zeng Tang, Xuemei Zhang, Li Zhu, Tian Meng, Linying Yu, Ting Xiao, Shasha Lu, Xiaoli Xiong, Xiurong Yang

Summary: A sensitive off-on electrochemiluminescence DNA sensor was developed using Exo III-assisted cascade amplification system. The sensor achieved high selectivity and ultra-high sensitivity in detecting target DNA by utilizing ECL and SPR effects. This study provides a new perspective for designing highly sensitive and programmable ECL biosensors.

TALANTA (2024)

Article Chemistry, Analytical

A binary system based DNA tetrahedron and fluorogenic RNA aptamers for highly specific and label-free mRNA imaging in living cells

Tong Li, Mengxu Sun, Suping Xia, Ting Huang, Rong-Tian Li, Chunrong Li, Zong Dai, Jin-Xiang Chen, Jun Chen, Nuan Jia

Summary: Here, we developed a binary system based on DNA tetrahedron and fluorogenic RNA aptamers for highly specific and label-free mRNA imaging in living cells. This system achieved high specificity label-free detection of nucleic acids with a detection limit of 1.34 nM. The method has potential applications in early disease diagnosis and new drug development.

TALANTA (2024)

Article Chemistry, Analytical

Design and synthesis of hierarchical MnO-Fe3O4@C/expanded graphite composite for sensitive electrochemical detection of bisphenol A

Yao Zhao, Shu Zhang, Wang Yao, Yuxuan Zhu, Jing Qian, Juan Yang, Nianjun Yang

Summary: A new hierarchical nanostructured composite with high conductivity and catalytic activity is synthesized. The sensor exhibits significant catalytic effect and high sensitivity for monitoring the environmental endocrine disruptor bisphenol A (BPA).

TALANTA (2024)