4.4 Article

Thermal resistance minimization of a fin-and-porous-medium heat sink with evolutionary algorithms

Journal

NUMERICAL HEAT TRANSFER PART A-APPLICATIONS
Volume 54, Issue 4, Pages 349-366

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10407780802148481

Keywords

-

Ask authors/readers for more resources

This article presents a conceptual design of a heat sink combining a porous medium whose matrix is highly conductive and a fin. A simplified model is presented to estimate the performance of the system, relying on Darcy law and local thermal equilibrium. The objective is to minimize the hot-spot temperature under global mass constraint by using an optimization procedure based on genetic algorithms. The design variables are the porosity and material of each layer of the porous medium, the fin material, height, and width, the aspect ratio of the heat sink, and the shape of a weightless upper corner deflector which reduces the width of the inlet and outlet air slots while removing the less useful mass. Results show that the optimal porous layers were generally of copper, independent of the mass constraint. However, the fin is mostly beneficial for heavier designs, while the deflector becomes more important when lightness is required. These two special features show their efficiency by allowing a mass reduction of 95% with a decrease of only 24% in the cooling performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available