4.3 Review

A dispersive approach to Sudakov resummation

Journal

NUCLEAR PHYSICS B
Volume 794, Issue 1-2, Pages 61-137

Publisher

ELSEVIER
DOI: 10.1016/j.nuclphysb.2007.10.022

Keywords

QCD; resummation; Sudakov logarithms; renormalons; power corrections

Funding

  1. STFC [ST/G000522/1] Funding Source: UKRI
  2. Science and Technology Facilities Council [ST/G000522/1] Funding Source: researchfish

Ask authors/readers for more resources

We present a general all-order formulation of Sudakov resummation in QCD in terms of dispersion integrals. We show that the Sudakov exponent can be written as a dispersion integral over spectral density functions, weighted by characteristic functions that encode information on power corrections. The characteristic functions are defined and computed analytically in the large-beta(0) limit. The spectral density functions encapsulate the non-Abelian nature of the interaction. They are defined by the time-like discontinuity of specific effective charges (couplings) that are directly related to the familiar Sudakov anomalous dimensions and can be computed order-by-order in perturbation theory. The dispersive approach provides a realization of dressed gluon exponentiation, where Sudakov resummation is enhanced by an internal resummation of running-coupling corrections. We establish all-order relations between the scheme-invariant Borel formulation and the dispersive one, and address the difference in the treatment of power corrections. We find that in the context of Suclakov resummation the infrared-finite-coupling hypothesis is of special interest because the relevant coupling can be uniquely identified to any order, and may have an infrared fixed point already at the perturbative level. We prove that this infrared limit is universal: it is determined by the cusp anomalous dimension. To illustrate the formalism we discuss a few examples including B-meson decay spectra, deep inelastic structure functions and Drell-Yan or Higgs production. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Physics, Particles & Fields

Non-equilibrium dynamics of dipole-charged fields in the Proca theory

Bogdan Damski

Summary: In this paper, we discuss the dynamics of field configurations in the Proca theory of the real massive vector field, specifically focusing on a certain class of electric (magnetic) dipole-charged states. We construct these states to ensure that the long-distance structure of the mean electromagnetic field is initially set by the formula describing the electromagnetic field of the electric (magnetic) dipole. We analyze the evolution of this mean electromagnetic field over time and observe the phenomena of harmonic oscillations of the electric (magnetic) dipole moment far from the center of the initial field configuration, as well as the emergence of a spherical shock wave propagating at the speed of light near the center. Additionally, we discover a unique axisymmetric mean electric field configuration accompanying the mean magnetic field in magnetic dipole-charged states.

NUCLEAR PHYSICS B (2024)

Article Physics, Particles & Fields

Slow complexification

Brett McInnes

Summary: The time-dependence of AdS black hole interior geometries poses challenges to holographic duality and the traversability of wormholes. Quantum circuit complexity of strongly coupled matter can address the first challenge. Data from a phenomenological model show an upper bound on the complexity growth rate, which becomes stricter with the addition of angular momentum. The slowing of black hole interior dynamics at high specific angular momentum also occurs.

NUCLEAR PHYSICS B (2024)

Article Physics, Particles & Fields

(2,0) theory on S5 x S1 and quantum M2 branes

M. Beccaria, S. Giombi, A. A. Tseytlin

Summary: This article investigates the superconformal index Z of the 6d (2,0) theory on S5 x S1 and describes it using the quantum M2 brane theory in the large N limit. By studying M2 branes in a twisted product of thermal AdS7 and S4, the leading non-perturbative term at large N is shown to be reproduced by the 1-loop partition function of an instanton M2 brane wrapped on S1 x S2 with S2 c S4. Similarly, the partition function of a defect M2 brane wrapped on thermal AdS3 c AdS7 reproduces the BPS Wilson loop expectation value in the (2,0) theory. The article also comments on the analogy of these results with similar computations in the quantum M2 brane partition function in AdS4 x S7/DOUBLE-STRUCK CAPITAL Zk, which reproduced the corresponding localization expressions in the ABJM 3d gauge theory.

NUCLEAR PHYSICS B (2024)

Article Physics, Particles & Fields

A note on the AdS/CFT correspondence and the nature of spacetime in quantum gravity

Carlos Silva

Summary: This paper explores the nature of spacetime in quantum gravity based on a new version of the holographic principle that establishes a connection between string theory and polymer holonomy structures. The research findings suggest that, for this relationship to hold, spacetime must be perceived as emerging from a fundamental structure with degrees of freedom corresponding to quantum correlations only.

NUCLEAR PHYSICS B (2024)

Article Physics, Particles & Fields

Sensitivity of anomalous quartic gauge couplings via tri-photon production at FCC-hh

A. Senol, H. Denizli, C. Helveci

Summary: This study investigates new physics using a Monte Carlo method, and the results show stronger limitations on anomalous quartic gauge couplings compared to previous experiments.

NUCLEAR PHYSICS B (2024)