4.3 Article Proceedings Paper

Effect of C2H2 flow rate on microstructure and properties of nc-Cu/a-C:H nanocomposite films prepared by filtered cathodic vaccum arc technique

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nimb.2013.01.012

Keywords

Filtered cathodic vaccum arc; Nanocomposite nc-Cu/a-C:H film; Microstructure

Ask authors/readers for more resources

Nc-Cu/a-C:H nanocomposite films are deposited by filtered cathodic vaccum arc (FCVA) technique using C2H2 as the precursor. The effects of C2H2 flow rate on the microstructure, composition and properties of nc-Cu/a-C:H films have been studied by Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nanoindentation test. In these films, copper nanoparticles (3.5-15 nm) are embedded in the amorphous carbon matrix, which could be confirmed by XRD analysis. Raman spectroscopy and XPS results confirm the decrease of sp(3) content with the increasing copper fraction, which could be a result of more severe thermalization on carbon matrix owing to the presence of copper. The compressive stresses of these films, calculated by Stoney's equation, are found to be as low as 0.5 Gpa, declining with the increasing copper content. Nanoindentation measurements reveal that the film hardness falls monotonically as the Cu content in the films increases. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available