4.3 Article

MD simulations of onset of tungsten fuzz formation under helium irradiation

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nimb.2012.11.029

Keywords

Tungsten; Helium; Fuzz; Molecular dynamics simulations; Clusters; Fusion reactor materials; ITER

Funding

  1. European Communities under the contract of Association between EURATOM/Tekes
  2. Finnish National Graduate School in Material Physics

Ask authors/readers for more resources

When helium (He) escapes a fusion reactor plasma, a tungsten (W)-based divertor may, under some conditions, form a fuzz-like nano-morphology. This is a highly undesired phenomenon for the divertor, and is not well understood. We performed molecular dynamics simulations of high fluence He and also C-seeded He (He+C) irradiation on W, focusing on the effect of the high fluence, the temperature and the impurities on the onset of the structure formation. We concluded that MD reproduces the experimentally found square root of time dependence of the surface growth. The He atomic density decreases when increasing the number of He atoms in the cell. A higher temperature causes a larger bubble growth and desorption activity, specially for the pure He irradiation cases. It also it leads to W recrystallization for the He+C irradiation cases. Carbon acts as a local He trap for small clusters or single atoms and causes a larger loss of crystallinity of the W surface. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available