4.7 Article

Creating geometrically robust designs for highly sensitive problems using topology optimization

Journal

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
Volume 52, Issue 4, Pages 737-754

Publisher

SPRINGER
DOI: 10.1007/s00158-015-1265-5

Keywords

Topology optimization; Robust design; Wave propagation; Acoustics; Noise reduction; Projection filtering; Uniform design variations; Non-uniform design variations

Funding

  1. Villum Fonden through the research project Topology Optimization - the Next Generation NextTop

Ask authors/readers for more resources

Resonance and wave-propagation problems are known to be highly sensitive towards parameter variations. This paper discusses topology optimization formulations for creating designs that perform robustly under spatial variations for acoustic cavity problems. For several structural problems, robust topology optimization methods have already proven their worth. However, it is shown that direct application of such methods is not suitable for the acoustic problem under consideration. A new double filter approach is suggested which makes robust optimization for spatial variations possible. Its effect and limitations are discussed. In addition, a known explicit penalization approach is considered for comparison. For near-uniform spatial variations it is shown that highly robust designs can be obtained using the double filter approach. It is finally demonstrated that taking non-uniform variations into account further improves the robustness of the designs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Multidisciplinary

De-homogenization of optimal 2D topologies for multiple loading cases

Peter Dorffler Ladegaard Jensen, Ole Sigmund, Jeroen P. Groen

Summary: This work presents an extension of the de-homogenization method to obtain high-resolution, near-optimal 2D topologies optimized for minimum compliance under multiple load cases. The design is regularized using a material indicator field to avoid thin microstructure features and the orientations of the microstructures are further regularized to avoid singularities. A single-scale interpretation of the designs is derived using de-homogenization, eliminating the need for costly postprocessing analysis. The approach consistently delivers structural performance values close to density-based large-scale solutions with a significant reduction in CPU time.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2022)

Article Engineering, Multidisciplinary

Structural topology optimization with predetermined breaking points

Gustavo Assis da Silva, Andre Teofilo Beck, Ole Sigmund

Summary: This paper discusses the concept of predetermined breaking points in topology optimization and proposes a novel formulation for designing optimized structures. The formulation allows for controlling the location of failure in case of overload and ensures that the structure remains functional after removing the damaged part.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2022)

Article Mechanics

Buckling and yield strength estimation of architected materials under arbitrary loads

Morten N. Andersen, Yiqiang Wang, Fengwen Wang, Ole Sigmund

Summary: This study investigates the buckling strength of stretch-dominated lattice structures using local member analysis and proposes a new isotropic plate lattice configuration with enhanced buckling strength isotropy.

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES (2022)

Article Chemistry, Multidisciplinary

Non-Hierarchical Architected Materials with Extreme Stiffness and Strength

Fengwen Wang, Marie Brons, Ole Sigmund

Summary: Stretch-dominated truss and plate microstructures are competing in the development of highly rigid and strong architected materials. Although closed-cell isotropic plate microstructures meet theoretical upper bounds on stiffness, they have low buckling strength, whereas open-cell truss microstructures have high buckling strength but reduced stiffness. Hollow truss lattice and hierarchical microstructures outperform both in terms of buckling strength, but are challenging to build. In this study, single-scale non-hierarchical microstructures are designed, built, and tested, surpassing the buckling strength of hollow truss lattice and plate microstructures. The microstructures are realized with 3D printing and both experiments and numerical modeling validate the theoretical predictions.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Optics

Impact of figures of merit in photonic inverse design

Rasmus E. Christiansen, Philip Trost Kristensen, Jesper Mork, Ole Sigmund

Summary: Using topology optimization, compact wavelength-sized devices are designed to study the effect of optimizing geometries for enhancing different optical processes. The findings show that different field distributions lead to maximization of different processes, emphasizing the importance of targeting the appropriate metric when designing photonic components for optimal performance.

OPTICS EXPRESS (2023)

Article Engineering, Multidisciplinary

Multi-material topology optimization for maximizing structural stability under thermo-mechanical loading

Yafeng Wang, Ole Sigmund

Summary: This study aims to optimize the buckling capacity of mechanical structures subjected to thermal and mechanical loading through a density-based topology optimization scheme. By decoupling the effects of mechanical and thermal loadings, the buckling aspects induced by each loading can be separately analyzed and optimized. The study also employs a multi-material topology optimization scheme to optimize the buckling capacity of active structures and prestressed structures.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2023)

Article Engineering, Multidisciplinary

Simple and efficient GPU accelerated topology optimisation: Codes and applications

Erik A. Traff, Anton Rydahl, Sven Karlsson, Ole Sigmund, Niels Aage

Summary: This work presents three-dimensional linear elastic compliance minimisation using topology optimisation implementations accelerated by Graphics Processing Units (GPUs). Two GPU-accelerated implementations, based on OpenMP 4.5 and the Futhark language, are presented. Both implementations utilize high level GPU frameworks, avoiding the need for expertise knowledge of CUDA or OpenCL. Additionally, a vectorised and multi-threaded CPU code is included for reference. The results show that the GPU accelerated codes are able to solve large-scale topology optimisation problems faster than the reference CPU code, and they can also handle nonlinear problems.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2023)

Article Engineering, Multidisciplinary

Topology optimization of multiscale structures considering local and global buckling response

Christoffer Fyllgraf Christensen, Fengwen Wang, Ole Sigmund

Summary: Topology optimization has been used for maximizing stiffness or minimizing compliance in multiscale structures. This study focuses on optimizing buckling stability of multiscale structures with isotropic porous infill, by considering both local and global instability.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2023)

Article Engineering, Multidisciplinary

A strategy for avoiding spurious localized buckling modes in topology optimization

Federico Ferrari, Ole Sigmund

Summary: In this study, a strategy is introduced to prevent the occurrence of spurious modes in the spectrum computed by linearized buckling analysis in the context of topology optimization. Spurious buckling modes commonly appear in low density regions, but this study also highlights the occurrence of localized modes in solid areas due to the limitations of linearized buckling analysis. The proposed remedy involves using filtering and erosion operations on the stress field, helping to mitigate the occurrence of spurious modes and improve the optimization process towards high performance designs.

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING (2023)

Article Computer Science, Interdisciplinary Applications

Simultaneous shape and topology optimization of wings

Lukas C. Hoghoj, Cian Conlan-Smith, Ole Sigmund, Casper Schousboe Andreasen

Summary: This paper presents a method for simultaneous optimization of the outer shape and internal topology of aircraft wings, with the objective of minimizing drag subject to lift and compliance constraints for multiple load cases. The physics are evaluated by the means of a source-doublet panel method for the aerodynamic response and linear elastic finite elements for the structural response, which are one-way coupled. Wings of small fixed-wing airplanes both with and without a stiffening strut are optimized. The resulting wings show internal topologies with struts and wall-truss combinations, depending on the design freedom of the shape optimization. The lift distributions of the optimized wings show patterns like the ones obtained when performing optimization of wing shapes with constraints on the bending moment at the root.

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION (2023)

Article Multidisciplinary Sciences

Hybrid achromatic microlenses with high numerical apertures and focusing efficiencies across the visible

Corey A. Richards, Christian R. Ocier, Dajie Xie, Haibo Gao, Taylor Robertson, Lynford L. Goddard, Rasmus E. Christiansen, David G. Cahill, Paul V. Braun

Summary: In this study, the authors used subsurface 3D printing to fabricate compact and high-performance achromatic imaging micro-optics. These micro-optics, which integrate refractive and diffractive elements, demonstrate high focusing efficiencies, high numerical apertures, and low chromatic focusing errors, offering a promising pathway towards achromatic micro-optical systems.

NATURE COMMUNICATIONS (2023)

Article Mathematics, Interdisciplinary Applications

Topology optimization of self-contacting structures

Andreas Henrik Frederiksen, Ole Sigmund, Konstantinos Poulios

Summary: This paper addresses the limitations of incorporating contact in topology optimization and proposes a new method for topology optimization problems with internal contact. The method ensures stability and robustness of the optimized designs by introducing a tangent stiffness requirement and penalizing small features. The examples demonstrate the effectiveness of the method in topology optimization under large deformations.

COMPUTATIONAL MECHANICS (2023)

Article Engineering, Multidisciplinary

Programming and physical realization of extreme three-dimensional responses of metastructures under large deformations

Weichen Li, Yingqi Jia, Fengwen Wang, Ole Sigmund, Xiaojia Shelly Zhang

Summary: This study systematically investigates several precisely programmed nonlinear extreme responses in 3D structures under finite deformations through multimaterial inverse design by topology optimization. Unique complex 3D geometries with deformation capabilities are discovered and utilized to deliver the target responses. The optimized structure is accurately fabricated through a proposed hybrid fabrication method and the design's programmed behavior is validated.

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE (2023)

Article Multidisciplinary Sciences

Modelling and simulation of brinicle formation

Felipe Gomez-Lozada, Carlos Andres del Valle, Julian David Jimenez-Paz, Boyan S. Lazarov, Juan Galvis

Summary: In this study, a mathematical model is developed to describe the phenomenon of brinicles. The model is able to capture the general behavior of the physical system, generating structures similar to brinicles and recovering dendrite composition in alignment with previous experimental results.

ROYAL SOCIETY OPEN SCIENCE (2023)

Article Engineering, Multidisciplinary

Phasor noise for dehomogenisation in 2D multiscale topology optimisation

Rebekka Woldseth, J. Andreas Baerentzen, Ole Sigmund

Summary: This paper presents an alternative approach to dehomogenisation of elastic Rank-N laminate structures based on the computer graphics discipline of phasor noise. The proposed methodology offers an improvement of existing methods, where high-quality single-scale designs can be obtained efficiently without the utilisation of any least-squares problem or pre-trained models. Numerical tests verifies the performance of the proposed methodology compared to state-of-the-art alternatives, and the dehomogenised designs achieve structural performance within a few percentages of the optimised homogenised solution.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

No Data Available