4.6 Article

Structural and ferroelectric transitions in magnetic nickelate PbNiO3

Journal

NEW JOURNAL OF PHYSICS
Volume 16, Issue -, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1367-2630/16/1/015030

Keywords

-

Funding

  1. European Union
  2. Department of Science and Technology of India [233553]
  3. Fondazione Banco di Sardegna grants
  4. PRACE initiative at CINECA (IT) and Barcelona Supercomputing Centers
  5. CARIPLO Foundation through the ECOMAG project [2010-0584]

Ask authors/readers for more resources

Density functional calculations have been tremendously useful in understanding the microscopic origin of multiferroicity and in quantifying relevant properties in many multiferroics and magnetoelectrics. Here, we focus on a relatively new and promising compound, PbNiO3. The structural, electronic and magnetic properties of its two polymorphs, i.e. the orthorhombic structure with space group Pnma and the rhombohedral LiNbO3-type structure with space group R3c have been studied by using density functional calculations within DFT+U and hybrid functional schemes. Our data convey an accurate description of the pressure-induced phase transition from the rhombohedral to orthorhombic phase at a predicted critical pressure of 5 GPa in agreement with the measured value of 3 GPa. Both phases show the G-type antiferromagnetic configuration as a magnetic ground state, but differ in the spatial anisotropy associated with nearest-neighbor exchange couplings, which is strongly weakened in the rhombohedral LiNbO3-type phase. The predicted large ferroelectric polarization of the rhombohedral phase (Hao et al 2012 Phys. Rev. B 014116) has been reexplored and analyzed in detail using partial density of states, Born effective charge tensors, charge density difference, electron localization function analysis and distortion mode analysis. The asymmetric bonding between the Pb 6s and O 2p orbitals along the [111]-direction is responsible for the polar cationic displacement, giving rise to a predicted large ferroelectric polarization as high as similar to 100 mu C cm(-2).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available