4.6 Article

Dark stars and boosted dark matter annihilation rates

Journal

NEW JOURNAL OF PHYSICS
Volume 13, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/13/5/053050

Keywords

-

Funding

  1. DOE
  2. Michigan Center for Theoretical Physics at the University of Michigan
  3. DOE at Fermilab

Ask authors/readers for more resources

Dark stars (DSs) may constitute the first phase of stellar evolution, powered by dark matter (DM) annihilation. We investigate here the properties of DSs, assuming that the DM particle has the properties required for explaining the excess positron and electron signals in the cosmic rays detected by the PAMELA and FERMI satellites. Any possible DM interpretation of these signals will require exotic DM candidates, with annihilation cross-sections a few orders of magnitude higher than the canonical value required for correct thermal relic abundance for weakly interacting DM candidates; additionally, in most models, the annihilation must be preferentially to leptons. Secondly, we study the dependence of DS properties on the concentration parameter of the initial DM density profile of the halos where the first stars are formed. We restrict our study to the DM in the star due to simple (versus extended) adiabatic contraction and minimal (versus extended) capture; this simple study is sufficient to illustrate dependence on the cross-section and concentration parameter. Our basic results are that the final stellar properties, once the star enters the main sequence, are always roughly the same, regardless of the value of the boosted annihilation or concentration parameter in the range between c = 2 and c = 5: stellar mass similar to 1000M(circle dot), luminosity similar to 10(7)L(circle dot) and lifetime similar to 10(6) years (for the minimal DM models considered here; additional DM would lead to more massive DSs). However, the lifetime, final mass and final luminosity of the DSs show some dependence on the boost factor and concentration parameter, as discussed in this paper.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available