4.6 Article

A generalized strategy for controlled synthesis of ternary metal sulfide nanocrystals

Journal

NEW JOURNAL OF CHEMISTRY
Volume 38, Issue 1, Pages 77-83

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nj00928a

Keywords

-

Funding

  1. Chinese Academy of Sciences Bairen Ji Hua Program
  2. Ministry of Science and Technology of China [2011CB965004]
  3. National Natural Science Foundation of China [21073225, 2110116]
  4. National Natural Science Foundation of Jiangsu Province [BK2012007]
  5. CAS/SAFEA International Partnership Program for Creative Research Teams

Ask authors/readers for more resources

Ternary metal sulfide nanocrystals (TMS NCs) have drawn intense attention for their wide applications in photovoltaics and nanophotonics, etc. However, a facile and general method for controlled synthesis of TMS NCs with uniform size and pure crystal phase is yet to be realized. Here we report a simple and versatile one-pot method for preparing high quality TMS NCs with controlled morphologies, sizes, crystalline structures and compositions, including orthorhombic Cu3BiS3 nanosheets and nanoparticles, orthorhombic Cu4Bi4S8 nanowires and nanoribbons, wurtzite CuInS2 nanopencils, cubic AgBiS2 nanocubes, orthorhombic Ag8SnS6 nanoparticles, and orthorhombic Cu3SnS4 nanorods, based on the co-thermal decomposition of metal-diethyl dithiocarbamate (metal-DDTC) precursors. We expect that this methodology will be broadly applicable for synthesizing new metal sulfide NCs and play an important role in exploring their new properties for various applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Use of a novel layered titanoniobate as an anode material for long cycle life sodium ion batteries

Keyu Xie, Wenfei Wei, Haoran Yu, Manjiao Deng, Shanming Ke, Xierong Zeng, Zhihua Li, Chao Shen, Jian-gan Wang, Bingqing Wei

RSC ADVANCES (2016)

Article Chemistry, Multidisciplinary

Generalized synthesis of metal sulfide nanocrystals from single-source precursors: size, shape and chemical composition control and their properties

Shuling Shen, Yejun Zhang, Long Peng, Bing Xu, Yaping Du, Manjiao Deng, Huarui Xu, Qiangbin Wang

CRYSTENGCOMM (2011)

Article Chemistry, Multidisciplinary

Controlled synthesis of AgInS2 nanocrystals and their application in organic-inorganic hybrid photodetectors

Manjiao Deng, Shuling Shen, Xuewen Wang, Yejun Zhang, Huarui Xu, Ting Zhang, Qiangbin Wang

CRYSTENGCOMM (2013)

Article Materials Science, Multidisciplinary

Synergistic enhancement of thermoelectric and mechanical performances of ionic liquid LiTFSI modulated PEDOT flexible films

Qikai Li, Manjiao Deng, Shuangmeng Zhang, Duokai Zhao, Qinglin Jiang, Chuanfei Guo, Qing Zhou, Weishu Liu

JOURNAL OF MATERIALS CHEMISTRY C (2019)

Article Chemistry, Multidisciplinary

Two biomass material-derived self-doped (N/O) porous carbons from waste coriander and lilac with high specific surface areas and high capacitance for supercapacitors

Zihan Ma, Lishuang Wang, Tingting Chen, Guangning Wang

Summary: In this study, two kinds of 3D self-doped (N/O) lilac-based and coriander-based porous carbons with high performance have been prepared.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Nitrate anions embedded in rigid and cationic 3D energetic MOFs constructed by the chelating ligand towards insensitive energetic materials

Qin Wang, Yun-Fan Yan, Jiao-Lin Weng, Ying Huang, Fu Yang, Hao-Hui Xie, Fei Tan, Fa-Kun Zheng, Jian-Gang Xu

Summary: Balancing energy and mechanical sensitivities is a challenging issue in the field of energetic materials. This study constructed a 3D energetic metal-organic framework with nitrogen-rich ligand and NO3- anions. The framework demonstrated high stability, energy density, and excellent mechanical sensitivities, making it a potential insensitive energetic material.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Mangifera indica stone-assisted layered double hydroxide biocomposites: efficient contenders for reactive dye adsorption from aqueous sources

Marrium Saeed, Urooj Kamran, Amina Khan, Md Irfanul Haque Siddiqui, Hasan Jamal, Haq Nawaz Bhatti

Summary: In this study, magnesium-aluminum layered double hydroxides (Mg-Al-LDH) were synthesized using an environmentally friendly hydrothermal technique for adsorbing the dye reactive green 5 (RG5). To improve the adsorption capability, composites were prepared by combining Mg-Al-LDH with low-cost Mangifera indica stone biomass (MISB). The results showed that the composites had high adsorption capacities for RG5 dye and could be regenerated.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Unlocking the biosynthetic regulation role of polyketide alkaloid lydicamycins

Xuanlin Zhan, Xiaojie Li, Yunyan Zeng, Siyan Jiang, Chao Pan, Shiyu Pan, Jiaquan Huang, Heqian Zhang, Zhiwei Qin

Summary: This study reports on the potential prospects of natural products derived from the rhizosphere for the development of antibiotics and herbicides, as well as the advancements in cultivating a mutant strain that produces a substantial quantity of lydicamycins, a potent family for herbicide development.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

3D-printing of attapulgite monoliths with superior low-temperature selective catalytic reduction activity: the influence of thermal treatment

Jie Zhu, Jiangtao Yu, Linhua Zhu, Xiaoxiao Yu, Jixing Liu, Yanhong Chao, Jingzhou Yin, Peiwen Wu, Jian Liu, Wenshuai Zhu

Summary: This study successfully demonstrates the 3D printing of attapulgite monoliths and investigates the influence of thermal treatment on their properties. The thermal treated monoliths show superior catalytic performance at low temperatures.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Photo-electro concerted catalysis of a highly active Pt/CoP/C nanocomposite for the hydrogen evolution reaction

Yanzhu Ye, Yixiang Ye, Jiannan Cai, Zhongshui Li, Shen Lin

Summary: In this paper, a novel Pt/CoP/C photo-electro synergistic catalyst was successfully synthesized and its performance was investigated. The catalyst exhibited excellent photo-electro catalytic performance, with significantly higher hydrogen production compared to a commercial catalyst. The introduction of cobalt phosphide and the existence of Co3O4 were identified as key factors for enhancing the catalytic activity.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Synthesis of a water-based TEOS-PDMS sol-gel coating for hydrophobic cotton and polyester fabrics

Nurul Hidayah Abu Bakar, Wan Norfazilah Wan Ismail, Hartina Mohd Yusop, Noreen Farzuhana Mohd Zulkifli

Summary: Hydrophobic coatings inspired by the lotus effect have gained popularity for their ability to solve various problems. The sol-gel method, utilizing silica, alumina, and titania, is explored as an environmentally friendly approach to produce water-based hydrophobic coatings. This study focuses on producing water-based hydrophobic coatings for cotton and polyester fabrics using a one-step sol-gel method. The coated fabrics exhibited improved hydrophobic properties, altered surface morphologies, and lower air permeability compared to uncoated fabrics. TEOS-PDMS coating provides a promising approach for enhancing the hydrophobic and surface properties of cotton and polyester fabrics.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Non-aqueous electrochemistry of rhodamine B acylhydrazone

Nikita Belko, Hanna Maltanava, Anatol Lugovski, Polina Shabunya, Sviatlana Fatykhava, Evgeny Bondarenko, Pavel Chulkin, Sergey Poznyak, Michael Samtsov

Summary: This study investigates the difference in electrochemical behavior between rhodamine B hydrazide and rhodamine B acylhydrazone, and finds that rhodamine B acylhydrazone exhibits higher reversibility in electrooxidation. These results can be applied for developing new sensors with desired electrochemical properties.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Exploring the magnetic, electric and magnetodielectric properties of (1-x)Ba0.9Ni0.1Ti0.9Mn0.1O3-xCo0.9Mn0.1Fe1.9V0.1O4 multiferroic composites

Showket Ahmad Bhat, Mohd Ikram

Summary: In this study, 0-3 particulate multiferroic composites were synthesized and characterized. The composites exhibited excellent ferroelectric and ferromagnetic properties, as well as high piezoelectric strain and magnetoelectric coupling effects.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

On the mechanochemical synthesis of C-scorpionates with an oxime moiety and their application in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction

Carla Gomes, Mariana Costa, Susana M. M. Lopes, Bernardo Albuquerque Nogueira, Rui Fausto, Jose A. Paixao, Teresa M. V. D. e Melo, Luisa M. D. R. S. Martins, Marta Pineiro

Summary: The development of sustainable processes requires the integration of green chemistry principles. In this study, a solvent-free synthesis method was developed to prepare new copper catalysts, which efficiently catalyze cycloaddition reactions under solvent-free mechanochemical conditions. Through this process, the principles of atom economy, reduction of solvents and auxiliaries, design for energy efficiency, and reduction of derivatives and catalysis are combined.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Phosphate ions improve the performance of BiFeO3 piezoelectric photoelectrochemical water splitting

Zhihua Liu, Jinzhe Li, Jianguo Zhou

Summary: This study demonstrates the enhancement of photoelectrochemical activity of BiFeO3 photoelectrodes through ion modification, which increases visible light absorption and active area, leading to improved PEC water splitting performance.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Synthesis of p-aminophenol by transfer hydrogenation of nitrobenzene with formic acid as a hydrogen source

Yisheng Zhang, Wensong Li, Jing Li, Fang Li, Wei Xue, Xinqiang Zhao, Yanji Wang

Summary: Pt/C and SO42-/ZrO2 were used as catalysts for the synthesis of p-aminophenol through the catalytic transfer hydrogenation of nitrobenzene in water with formic acid as the hydrogen source. The optimal Pt loading for PAP selectivity was found to be 1 wt%. The presence of different valence states of Pt affected both the nitrobenzene hydrogenation and formic acid decomposition. Among different solid acid catalysts tested, SO42-/ZrO2 exhibited the highest catalytic activity for p-aminophenol formation. Under the optimized reaction conditions, the conversion of nitrobenzene reached 80.0%, with a selectivity of 47.6% for p-aminophenol.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

A CuMoO4 nanocatalyst for Csp2-O cross-couplings; easy access to nitrofen derivatives

Pradyota Kumar Behera, Papita Behera, Amlan Swain, Santosh Kumar Sahu, Ajeena Sahoo, Laxmidhar Rout

Summary: We have developed a simple and direct method for the synthesis of diaryl ether using an oxygen bridged bimetallic CuMoO4 nanocatalyst under mild reaction conditions. The catalyst exhibited tolerance towards a wide range of substrates with various functional groups. It is efficient and recyclable. This methodology allows easy access to nitrofen derivatives (herbicides) from unactivated 2,4-dichlorophenol, which are important for agriculture and pharmaceuticals.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

A mechanistic study on coupling of CO2 and epoxide mediated by guanidine/TBAI catalysts

Yihua Fu, Yan Zhang, Changwei Hu, Zhishan Su

Summary: The mechanism of the reaction between CO2 and styrene oxide for cyclic carbonate was revealed using density functional theory calculations. The noncatalytic reaction occurred via a concerted mechanism, while in the presence of guanidine and tetrabutylammonium iodide (TBAI) co-catalysts, the epoxide ring-opening by nucleophilic attack of an iodide anion was predicted to be the rate-determining step. Guanidine acted as the H-bond donor to activate styrene oxide, facilitating the reaction with a lower activation barrier.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Localized surface plasmon resonance assisted photoredox catalysis using newly fabricated copper-nanorods: a decarboxylative approach towards carbon-hydrogen bond formation under visible light

Saikat Khamarui, Sirshendu Ghosh

Summary: Copper nanorods (Cu-NRs) exhibit significant plasmonic behavior and can act as efficient catalysts in redox processes and coupling. A benign decarboxylative approach, utilizing localized surface plasmon resonance (LSPR) assisted catalysis with Cu-NRs, has been developed for the production of alkane analogues from alkyl carboxylic acids under visible light. The catalyst shows a broad substrate scope and high functional group tolerance, without the need for an external oxidant or proton source. A plausible mechanism for this recyclable nano-catalyst has also been proposed based on control experiments.

NEW JOURNAL OF CHEMISTRY (2024)