4.5 Article

Varying Stimulation Parameters to Improve Cortical Plasticity Generated by VNS-tone Pairing

Journal

NEUROSCIENCE
Volume 388, Issue -, Pages 239-247

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2018.07.038

Keywords

vagal nerve stimulation; stimulation parameters; current intensity; inter-stimulation interval; cortical plasticity; auditory cortex

Categories

Funding

  1. NIH [R01NS085167, R01NS094384]
  2. Defense Advanced Research Projects Agency (DARPA) Biological Technologies Office (BTO) Electrical Prescriptions (ElectRx) program through the Space and Naval Warfare Systems Center [HR0011-15-2-0017, N66001-15-2-4057]
  3. DARPA BTO Targeted Neuroplasticity Training (TNT) program through the Space and Naval Warfare Systems Center [N66001-17-2-4011]

Ask authors/readers for more resources

Pairing vagus nerve stimulation (VNS) with movements or sounds can direct robust plasticity in motor or auditory cortex, respectively. The degree of map plasticity is influenced by the intensity and pulse width of VNS, number of VNS-event pairings, and the interval between each pairing. It is likely that these parameters interact, influencing optimal implementation of VNS pairing protocols. We varied VNS intensity, number of stimulations, and inter-stimulation interval (ISI) to test for interactions among these parameters. Rats were implanted with a vagus nerve stimulating cuff and randomly assigned to one of three treatment groups to receive 20 days of VNS paired with a 9-kHz tone: (1) Fast VNS: 50 daily pairings of 400-mu A VNS with a 30-s ISI; (2) Dispersed VNS: 50 daily pairings of 400-mu A VNS with a 180-s ISI; and (3) Standard VNS: 300 daily pairings of 800-mu A VNS with a 30-s ISI. Following 20 days of VNS-tone pairing, multi-unit recordings were conducted in primary auditory cortex (A1) and receptive field properties were analyzed. Increasing ISI (Dispersed VNS) did not lead to an enhancement of cortical plasticity. Reducing the current intensity and number of stimulations (Fast VNS) resulted in robust cortical plasticity, using 6 times fewer VNS pairings than the Standard protocol. These findings reveal an interaction between current intensity, stimulation number, and ISI and identify a novel VNS paradigm that is substantially more efficient than the previous standard paradigm. (C) 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available