4.5 Article

HYPOXIC PRECONDITIONING ATTENUATES GLOBAL CEREBRAL ISCHEMIC INJURY FOLLOWING ASPHYXIAL CARDIAC ARREST THROUGH REGULATION OF DELTA OPIOID RECEPTOR SYSTEM

Journal

NEUROSCIENCE
Volume 202, Issue -, Pages 352-362

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2011.11.060

Keywords

hypoxic preconditioning; neuroprotection; cardiac arrest; delta opioid receptor; hypoxia-inducible factor-1 alpha

Categories

Funding

  1. National Natural Science Foundation of China [81071527]
  2. Chinese Postdoctoral Science Foundation [201003743]

Ask authors/readers for more resources

This study was designed to investigate whether delta opioid receptor (DOR) is involved in the neuroprotective effect induced by hypoxic preconditioning (HPC) in the asphyxial cardiac arrest (CA) rat model. Twenty-four hours after the end of 7-day HPC, the rats were subjected to 8-min asphyxiation and resuscitated with a standardized method. In the asphyxial CA rat model, HPC improved the neurological deficit score (NDS), inhibited neuronal apoptosis, and increased the number of viable hippocampal CA1 neurons at 24 h, 72 h, or 7 days after restoration of spontaneous circulation (ROSC); however, the above-mentioned neuroprotection of HPC was attenuated by naltrindole (a selective DOR antagonist). The expression of hypoxia-inducible factor-1 alpha (HIF-1 alpha) and DOR, and the content of leucine enkephalin (L-ENK) in the brain were also investigated after the end of 7-day HPC. HPC upregulated the neuronal expression of HIF-1 alpha and DOR, and synchronously elevated the content of L-ENK in the rat brain. HIF-1 alpha siRNA was used to further elucidate the relationship between HIF-1 alpha and DOR in the HPC-treated brain. Knockdown of HIF-1 alpha by siRNA markedly abrogated the HPC induced upregulation of HIF-1 alpha and DOR. The present study demonstrates that the expression of DOR in the rat brain is upregulated by HIF-1 alpha following exposure to 7-day HPC, at the same time, HPC also increases the production of endogenous DOR ligand L-ENK in the brain. DOR activation after HPC results in prolonged neuroprotection against subsequent global cerebral ischemic injury, suggesting a new mechanism of HPC-induced neuroprotection on global cerebral ischemia following CA and resuscitation. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Neurosciences

Human Placenta Derived Mesenchymal Stem Cells Transplantation Reducing Cellular Apoptosis in Hypoxic-Ischemic Neonatal Rats by Down-Regulating Semaphorin 3A/Neuropilin-1

Yang He, Jun Tang, Meng Zhang, Junjie Ying, Dezhi Mu

Summary: This study investigated the protective effects and mechanisms of human placenta derived mesenchymal stem cells (hPMSCs) transplantation in a rat model of hypoxic-ischemic encephalopathy (HIE). The results showed that hPMSCs transplantation reduced apoptosis and improved long-term neurological prognosis. Furthermore, the downregulation of Sema 3A/NRP-1 expression and activation of the PI3K/Akt/mTOR signaling pathway played a key role in the protective effects of hPMSCs.

NEUROSCIENCE (2024)

Article Neurosciences

Probing the Neurophysiology of Temporal Sensitivity in the Somatosensory System Using the Mismatch Negativity (MMN) Sensory Memory Paradigm

Emily L. Isenstein, Edward G. Freedman, Jiayi Xu, Ian A. DeAndrea-Lazarus, John J. Foxe

Summary: This study evaluated electrophysiological discrimination of parametric somatosensory stimuli in healthy young adults to understand how the brain processes the duration of tactile information. The results showed that participants did not electrophysiologically discriminate between 100 and 115 ms, but they exhibited distinct electrophysiological responses when the deviant stimuli were 130, 145, and 160 ms. These findings contribute to a better understanding of tactile sensitivity in different clinical conditions.

NEUROSCIENCE (2024)

Article Neurosciences

Enhancement of the Evoked Excitatory Transmission in the Nucleus Tractus Solitarius Neurons after Sustained Hypoxia in Mice Depends on A2A Receptors

Juliana R. Souza, Ludmila Lima-Silveira, Daniela Accorsi-Mendonca, Benedito H. Machado

Summary: This study demonstrates that A2A receptors play a crucial role in modulating synaptic transmission in the NTS neurons and are required for the enhancement of glutamatergic transmission observed under short-term sustained hypoxia conditions.

NEUROSCIENCE (2024)

Article Neurosciences

Correlation Between Cued Fear Memory Retrieval and Oscillatory Network Inhibition in the Amygdala Is Disrupted by Acute REM Sleep Deprivation

Miki Hashizume, Rina Ito, Rie Suge, Yasushi Hojo, Gen Murakami, Takayuki Murakoshi

Summary: The basolateral amygdaloid complex (BLA) is closely involved in the formation of emotional memories, including both aversive memory and contextual fear memory. Acute sleep deprivation (SD) disrupts the acquisition of tone-associated fear memory in juvenile rats, but has no significant effect on contextual fear memory. Slow network oscillation in the amygdala contributes to the formation of amygdala-dependent fear memory in relation to sleep.

NEUROSCIENCE (2024)

Article Neurosciences

Enhanced Gasdermin-E-mediated Pyroptosis in Alzheimer's Disease

Qunxian Wang, Shipeng Guo, Dongjie Hu, Xiangjun Dong, Zijun Meng, Yanshuang Jiang, Zijuan Feng, Weihui Zhou, Weihong Song

Summary: GSDME plays a crucial role in the pathogenesis of Alzheimer's disease by regulating the switch from apoptosis to pyroptosis and participating in neuroinflammatory response. Knockdown of GSDME has been shown to improve cognitive impairments, indicating that GSDME could be a therapeutic target for Alzheimer's disease.

NEUROSCIENCE (2024)