4.5 Article

INVOLVEMENT OF PROTEIN KINASE C AND PROTEIN KINASE A IN THE ENHANCEMENT OF L-TYPE CALCIUM CURRENT BY GABAB RECEPTOR ACTIVATION IN NEONATAL HIPPOCAMPUS

Journal

NEUROSCIENCE
Volume 179, Issue -, Pages 62-72

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2011.01.054

Keywords

L-type calcium channel; hippocampus; GABA(B) receptor; protein kinase C; protein kinase A; G-protein

Categories

Funding

  1. NIH [NS 048900]
  2. Biological Sciences Department at Marquette University

Ask authors/readers for more resources

In the early neonatal period activation of GABA(B) receptors attenuates calcium current through N-type calcium channels while enhancing current through L-type calcium channels in rat hippocampal neurons. The attenuation of N-type calcium current has been previously demonstrated to occur through direct interactions of the beta gamma subunits of G(i/o) G-proteins, but the signal transduction pathway for the enhancement of L-type calcium channels in mammalian neurons remains unknown. In the present study, calcium currents were elicited in acute cultures from postnatal day 6-8 rat hippocampi in the presence of various modulators of protein kinase A (PKA) and protein kinase C (PKC) pathways. Overnight treatment with an inhibitor of G(i/o) (pertussis toxin, 200 ng/ml) abolished the attenuation of calcium current by the GABA(B) agonist, baclofen (10 mu M) with no effect on the enhancement of calcium current. These data indicate that while the attenuation of N-type calcium current is mediated by the G(i/o) subtype of G-protein, the enhancement of L-type calcium current requires activation of a different G-protein. The enhancement of the sustained component of calcium current by baclofen was blocked by PKC inhibitors, GF-109203X (500 nM), chelerythrine chloride (5 mu M), and PKC fragment 19-36 (2 mu M) and mimicked by the PKC activator phorbol-12-myristate-13-acetate (1 mu M). The enhancement of the sustained component of calcium current was blocked by PKA inhibitors H-89 (1 mu M) and PKA fragment 6-22 (500 nM) but not Rp-cAMPS (30 mu M) and it was not mimicked by the PKA activator, 8-Br-cAMP (500 mu M-1 mM). The data suggest that activation of PKC alone is sufficient to enhance L-type calcium current but that PKA may also be involved in the GABA(B) receptor mediated effect. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Neurosciences

Human Placenta Derived Mesenchymal Stem Cells Transplantation Reducing Cellular Apoptosis in Hypoxic-Ischemic Neonatal Rats by Down-Regulating Semaphorin 3A/Neuropilin-1

Yang He, Jun Tang, Meng Zhang, Junjie Ying, Dezhi Mu

Summary: This study investigated the protective effects and mechanisms of human placenta derived mesenchymal stem cells (hPMSCs) transplantation in a rat model of hypoxic-ischemic encephalopathy (HIE). The results showed that hPMSCs transplantation reduced apoptosis and improved long-term neurological prognosis. Furthermore, the downregulation of Sema 3A/NRP-1 expression and activation of the PI3K/Akt/mTOR signaling pathway played a key role in the protective effects of hPMSCs.

NEUROSCIENCE (2024)

Article Neurosciences

Probing the Neurophysiology of Temporal Sensitivity in the Somatosensory System Using the Mismatch Negativity (MMN) Sensory Memory Paradigm

Emily L. Isenstein, Edward G. Freedman, Jiayi Xu, Ian A. DeAndrea-Lazarus, John J. Foxe

Summary: This study evaluated electrophysiological discrimination of parametric somatosensory stimuli in healthy young adults to understand how the brain processes the duration of tactile information. The results showed that participants did not electrophysiologically discriminate between 100 and 115 ms, but they exhibited distinct electrophysiological responses when the deviant stimuli were 130, 145, and 160 ms. These findings contribute to a better understanding of tactile sensitivity in different clinical conditions.

NEUROSCIENCE (2024)

Article Neurosciences

Enhancement of the Evoked Excitatory Transmission in the Nucleus Tractus Solitarius Neurons after Sustained Hypoxia in Mice Depends on A2A Receptors

Juliana R. Souza, Ludmila Lima-Silveira, Daniela Accorsi-Mendonca, Benedito H. Machado

Summary: This study demonstrates that A2A receptors play a crucial role in modulating synaptic transmission in the NTS neurons and are required for the enhancement of glutamatergic transmission observed under short-term sustained hypoxia conditions.

NEUROSCIENCE (2024)

Article Neurosciences

Correlation Between Cued Fear Memory Retrieval and Oscillatory Network Inhibition in the Amygdala Is Disrupted by Acute REM Sleep Deprivation

Miki Hashizume, Rina Ito, Rie Suge, Yasushi Hojo, Gen Murakami, Takayuki Murakoshi

Summary: The basolateral amygdaloid complex (BLA) is closely involved in the formation of emotional memories, including both aversive memory and contextual fear memory. Acute sleep deprivation (SD) disrupts the acquisition of tone-associated fear memory in juvenile rats, but has no significant effect on contextual fear memory. Slow network oscillation in the amygdala contributes to the formation of amygdala-dependent fear memory in relation to sleep.

NEUROSCIENCE (2024)

Article Neurosciences

Enhanced Gasdermin-E-mediated Pyroptosis in Alzheimer's Disease

Qunxian Wang, Shipeng Guo, Dongjie Hu, Xiangjun Dong, Zijun Meng, Yanshuang Jiang, Zijuan Feng, Weihui Zhou, Weihong Song

Summary: GSDME plays a crucial role in the pathogenesis of Alzheimer's disease by regulating the switch from apoptosis to pyroptosis and participating in neuroinflammatory response. Knockdown of GSDME has been shown to improve cognitive impairments, indicating that GSDME could be a therapeutic target for Alzheimer's disease.

NEUROSCIENCE (2024)