4.5 Article

DEXAMETHASONE PRE-TREATMENT PROTECTS BRAIN AGAINST HYPOXIC-ISCHEMIC INJURY PARTIALLY THROUGH UP-REGULATION OF VASCULAR ENDOTHELIAL GROWTH FACTOR A IN NEONATAL RATS

Journal

NEUROSCIENCE
Volume 179, Issue -, Pages 223-232

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2011.01.050

Keywords

glucocorticoids; vascular endothelial growth factor; neurotrophins; neuroprotection; apoptosis; neonatal rat

Categories

Ask authors/readers for more resources

Dexamethasone (Dex) provides neuroprotection against subsequent hypoxia ischemia (HI) in newborn rats, but the mechanism of this neuroprotection is not well understood. It is known that vascular endothelial growth factor A (VEGF) has neuroprotective effects. The objective of this study was to evaluate the role of the VEGF signaling pathway in the Dex-induced neuroprotection in newborn rats. Seven-day-old rat pups had the right carotid artery permanently ligated followed by 140 or 160 min of hypoxia (8% oxygen). Rat pups received two i.p. injections of either saline or Dex (0.25 mg/kg) at 24 and 4 h before HI exposure. To quantify the effects of a glucocorticoid receptor (GR) blocker, on postnatal day (PD) 6 and 15 min prior to Dex treatment rat pups received s.c. vehicle or RU486 (GR blocker, 60 mg/kg). After 24 h at PD 7, all rat pups had HI as described earlier. To quantify the effects of a VEGFR 2 blocker, at 24 h after Dex/Veh treatment (PD7), SU5416, a VEGFR 2 inhibitor or vehicle was injected intracerebroventricularly in the right hemisphere at 30 min before and 2 h after HI. Dex pre-treatment reduced brain injury and enhanced the HI-induced brain VEGF protein while a GR blocker inhibited these effects. Treatment with VEGFR 2 blocker decreased Dex-induced neuroprotection also. Dex pre-treatment enhanced the HI-induced increase in mRNA expression of VEGF splice variants and decreased the HI-induced reduction of Akt phosphorylation. Additionally, it also decreased HI-induced increase of caspase-3 activity and DNA fragments in neonatal rat brain. We conclude that Dex provides robust neuroprotection against subsequent HI in newborn rats via GR likely with the partial involvement of VEGF signaling pathway. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Neurosciences

Human Placenta Derived Mesenchymal Stem Cells Transplantation Reducing Cellular Apoptosis in Hypoxic-Ischemic Neonatal Rats by Down-Regulating Semaphorin 3A/Neuropilin-1

Yang He, Jun Tang, Meng Zhang, Junjie Ying, Dezhi Mu

Summary: This study investigated the protective effects and mechanisms of human placenta derived mesenchymal stem cells (hPMSCs) transplantation in a rat model of hypoxic-ischemic encephalopathy (HIE). The results showed that hPMSCs transplantation reduced apoptosis and improved long-term neurological prognosis. Furthermore, the downregulation of Sema 3A/NRP-1 expression and activation of the PI3K/Akt/mTOR signaling pathway played a key role in the protective effects of hPMSCs.

NEUROSCIENCE (2024)

Article Neurosciences

Probing the Neurophysiology of Temporal Sensitivity in the Somatosensory System Using the Mismatch Negativity (MMN) Sensory Memory Paradigm

Emily L. Isenstein, Edward G. Freedman, Jiayi Xu, Ian A. DeAndrea-Lazarus, John J. Foxe

Summary: This study evaluated electrophysiological discrimination of parametric somatosensory stimuli in healthy young adults to understand how the brain processes the duration of tactile information. The results showed that participants did not electrophysiologically discriminate between 100 and 115 ms, but they exhibited distinct electrophysiological responses when the deviant stimuli were 130, 145, and 160 ms. These findings contribute to a better understanding of tactile sensitivity in different clinical conditions.

NEUROSCIENCE (2024)

Article Neurosciences

Enhancement of the Evoked Excitatory Transmission in the Nucleus Tractus Solitarius Neurons after Sustained Hypoxia in Mice Depends on A2A Receptors

Juliana R. Souza, Ludmila Lima-Silveira, Daniela Accorsi-Mendonca, Benedito H. Machado

Summary: This study demonstrates that A2A receptors play a crucial role in modulating synaptic transmission in the NTS neurons and are required for the enhancement of glutamatergic transmission observed under short-term sustained hypoxia conditions.

NEUROSCIENCE (2024)

Article Neurosciences

Correlation Between Cued Fear Memory Retrieval and Oscillatory Network Inhibition in the Amygdala Is Disrupted by Acute REM Sleep Deprivation

Miki Hashizume, Rina Ito, Rie Suge, Yasushi Hojo, Gen Murakami, Takayuki Murakoshi

Summary: The basolateral amygdaloid complex (BLA) is closely involved in the formation of emotional memories, including both aversive memory and contextual fear memory. Acute sleep deprivation (SD) disrupts the acquisition of tone-associated fear memory in juvenile rats, but has no significant effect on contextual fear memory. Slow network oscillation in the amygdala contributes to the formation of amygdala-dependent fear memory in relation to sleep.

NEUROSCIENCE (2024)

Article Neurosciences

Enhanced Gasdermin-E-mediated Pyroptosis in Alzheimer's Disease

Qunxian Wang, Shipeng Guo, Dongjie Hu, Xiangjun Dong, Zijun Meng, Yanshuang Jiang, Zijuan Feng, Weihui Zhou, Weihong Song

Summary: GSDME plays a crucial role in the pathogenesis of Alzheimer's disease by regulating the switch from apoptosis to pyroptosis and participating in neuroinflammatory response. Knockdown of GSDME has been shown to improve cognitive impairments, indicating that GSDME could be a therapeutic target for Alzheimer's disease.

NEUROSCIENCE (2024)