4.5 Review

ASPECTS OF THE NEUROENDOCRINE CEREBELLUM: EXPRESSION OF SECRETOGRANIN II, CHROMOGRANIN A AND CHROMOGRANIN B IN MOUSE CEREBELLAR UNIPOLAR BRUSH CELLS

Journal

NEUROSCIENCE
Volume 162, Issue 3, Pages 673-687

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2009.02.017

Keywords

granins; calretinin; mGluR1 alpha; cerebellar nuclei; inferior olive

Categories

Funding

  1. PHS RO [NS 09904]

Ask authors/readers for more resources

Morphologically distinct neuron classes can be subdivided in sublineages by differential chemical phenotypes that correlate with functional diversity. Here we show by immunocytochemistry that chromogranin A (CgA) chromogranin B (CgB) and secretogranin 11 (SgII), the principal granins situated in neuronal secretory granules and large dense-core vesicles, are widely but differentially expressed in cells of the mouse cerebellum and terminals of cerebellar afferents. While CgA and CgB were nearly panneuronal, SgII was more restricted in distribution. The cells most intensely immunoreactive for SgII were a class of small, excitatory interneurons enriched in the granular layer of the vestibulocerebellum, the unipolar brush cells (UBCs), although larger neurons likely to be a subset of the Golgi-Lugaro-globular cell population were also distinctly immunopositive; by contrast, Purkinje cells and granule cells were, at best, faintly stained and, stellate, basket cells were unstained. SgII was also present in subsets of mossy fibers, climbing fibers and varicose fibers. Neurons in the cerebellar nuclei and inferior olive were distinctly positive for the three granins. Double-labeling with subset-specific cell class markers indicated that, while both CgA and CgB were present in most UBCs, SgII immunoreactivity was present in the calretinin (CR)-expressing subset, but lacked in metabotropic glutamate receptor 1alpha (mGluR1 alpha)-expressing UBCs. Thus, we have identified an additional cell class marker, SgII, which serves to study subtype properties in the UBC population. The abundance of SgII in only one of the two known subsets of UBCs is remarkable, as its expression in other neurons of the cortex was moderate or altogether lacking. The data suggest that the CR-positive UBCs represent a unique neuroendocrine component of the mammalian cerebellar cortex, presumably endowed with transynaptically regulated autocrine or paracrine action/s. Because of the well-known organization of the cerebellar system, several of its neuron classes may represent valuable cellular models to analyze granin functions in situ, in acute slices and in dissociated cell and organotypic slice cultures. (C) 2009 Published by Elsevier Ltd on behalf of IBRO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available