4.7 Article

Prokineticin 2 suppresses GABA-activated current in rat primary sensory neurons

Journal

NEUROPHARMACOLOGY
Volume 59, Issue 7-8, Pages 589-594

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2010.08.014

Keywords

Prokineticin 2; GABA-activated current; Depression; Primary sensory neuron; Patch clamp technique; Intracellular dialysis

Funding

  1. National Natural Science Foundation of China [30970944]
  2. Chinese Ministry of Education [210142]
  3. Natural Science Foundation of Hubei Province of China [2009CDB125]

Ask authors/readers for more resources

Prokineticin 2 (PK2) is a newly identified regulatory protein, which is involved in a wide range of physiological processes including pain perception in mammals. However, the precise role of PK2 in nociception is yet not fully understood. Here, we investigate the effects of PK2 on GABA(A) receptor function in rat trigeminal ganglion neurons using whole-cell patch clamp technique. PK2 reversibly depressed inward currents produced by GABA(A) receptor activation (I-GABA) with an IC50 of 0.26 +/- 0.02 nM. PK2 appeared to decrease the efficacy of GABA to GABA(A) receptor but not the affinity. The maximum response of the GABA dose response curve decreased to 71.2 +/- 7.0% of control after pretreatment with PK2, while the threshold value and EC50 of curve did not alter significantly. The effects of PK2 on I-GABA were voltage independent. The PK2-induced inhibition of I-GABA was removed by intracellular dialysis of either GDP-beta-S (a non-hydrolyzable GDP analog), EGTA (a Ca2+ chelator) or GF109203X (a selective protein kinase C inhibitor), but not by H89 (a protein kinase A inhibitor). These results suggest that PK2 down-regulates the function of the GABA(A) receptor via G-protein and protein kinase C dependent signal pathways in primary sensory neurons and this depression might underlie the hyperalgesia induced by PK2. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Correction Neurosciences

'The MK2 cascade regulates mGluR-dependent synaptic plasticity and reversal learning' (vol 155, pg 121, 2019)

Lucia Privitera, Ellen L. Hogg, Matthias Gaestel, Mark J. Wall, Sonia A. L. Correa

NEUROPHARMACOLOGY (2024)

Article Neurosciences

CREB-induced LINC00473 promotes chemoresistance to TMZ in glioblastoma by regulating O6-methylguanine-DNA-methyltransferase expression via CEBPα binding

Li-Ya Jiang, Guan-Hao Wang, Jing-Jiao Xu, Xiao-Li Li, Xiao-Yan Lin, Xiang Fang, Hong-Xu Zhang, Mei Feng, Chun-Ming Jiang

Summary: This study reveals the importance of LINC00473 in regulating temozolomide (TMZ) resistance in glioblastoma (GB) and its potential mechanism. By regulating the expression of CEBP alpha and MGMT, LINC00473 promotes the formation of chemoresistance. Furthermore, LINC00473 can transfer chemoresistance to adjacent sensitive cells through exosomes.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Mitochondrial malfunction mediates impaired cholinergic Ca2+signalling and submandibular salivary gland dysfunction in diabetes

Olga Kopach, Tetyana Pivneva, Nataliya Fedirko, Nana Voitenko

Summary: This study found that diabetic animals exhibit severe xerostomia characterized by reduced saliva flow rate, diminished total protein content, and decreased amylase activity. The impaired saliva production in diabetes is associated with reduced and delayed intracellular Ca2+ signals in submandibular acinar cells, caused by malfunctioning mitochondria. Targeting malfunctioning mitochondria may be a potential strategy for the treatment of diabetic xerostomia.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Non-consummatory behavior signals predict aversion-resistant alcohol drinking in head-fixed mice

Nicholas M. Timme, Cherish E. Ardinger, Seth D. C. Weir, Rachel Zelaya-Escobar, Rachel Kruger, Christopher C. Lapish

Summary: This study aimed to assess aversion-resistant drinking behavior in head-fixed mice and explore the relationship between non-consummatory behaviors and aversion-resistant drinking. The results showed that head-fixed mice exhibited heterogenous levels of aversion-resistant drinking and non-consummatory behaviors were related to the intensity of this behavior.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Daily methocinnamox treatment dose-dependently attenuates fentanyl self-administration in rhesus monkeys

David R. Maguire, Charles P. France

Summary: Methocinnamox (MCAM) is a novel, long-acting opioid receptor antagonist that effectively decreases fentanyl self-administration and prevents opioid overdose in monkeys. The study demonstrates the potential therapeutic utility of MCAM in the treatment of opioid use disorder.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Ventral hippocampus is more sensitive to fluoxetine-induced changes in extracellular 5-HT concentration, membrane 5-HT transporter level and immobility times

Xiang Li, Dan Feng, Shenglu Ma, Mingxing Li, Shulei Zhao, Man Tang

Summary: This study investigated the effects of fluoxetine on neurochemical, neurobiological, and neurobehavioral changes in different subregions of the hippocampus. The results showed that fluoxetine increased dialysate 5-HT, decreased membrane 5-HTT protein, and increased cytoplasmic fraction. Additionally, fluoxetine reduced immobility times in behavioral tests, with greater effects observed in the ventral subregion compared to the dorsal subregion.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Molecular mechanisms of cholinergic neurotransmission in visceral smooth muscles with a focus on receptor-operated TRPC4 channel and impairment of gastrointestinal motility by general anaesthetics and anxiolytics

Alexander V. Zholos, Mariia I. Melnyk, Dariia O. Dryn

Summary: Acetylcholine is an important neurotransmitter in visceral smooth muscles, activating M2 and M3 muscarinic receptors to cause smooth muscle excitation and contraction. This review focuses on the cellular and molecular mechanisms underlying acetylcholine-induced depolarisation and smooth muscle contraction, as well as the effects of anticholinergic drugs on gastrointestinal motility. The knowledge gained from recent studies has greatly expanded our understanding of these processes.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Methylone produces antidepressant-relevant actions and prosocial effects

Zhenlong Li, Hsien-Yu Peng, Chau-Shoun Lee, Tzer-Bin Lin, Ming-Chun Hsieh, Cheng-Yuan Lai, Han-Fang Wu, Lih-Chyang Chen, Mei-Ci Chen, Dylan Chou

Summary: Methylone shows significant efficacy in treating depression and social deficits, making it an ideal candidate for anti-depressant medication.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Fluoroethylnormemantine (FENM) shows synergistic protection in combination with a sigma-1 receptor agonist in a mouse model of Alzheimer's disease

Aline Freyssin, Allison Carles, Sarra Guehairia, Gilles Rubinstenn, Tangui Maurice

Summary: This study explores the potential of combining FENM and S1R agonists in the treatment of Alzheimer's disease. The results showed that most FENM-based combinations can protect against learning deficits caused by A beta 25-35, with better efficacy in short-term memory.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Sex-dependent effect of inflammatory pain on negative affective states is prevented by kappa opioid receptors blockade in the nucleus accumbens shell

J. D. Lorente, J. Cuitavi, L. Rullo, S. Candeletti, P. Romualdi, L. Hipolito

Summary: This study analyzed the effects of pain on negative affect in different sexes and time courses, as well as the involvement of the dynorphinergic and corticotropin releasing factor systems in these pain-related behaviors. The results showed sex and time-dependent anxiety- and anhedonia-like behaviors induced by pain in female rats. The recruitment of KOR/DYN in the NAc was identified as a key neurological substrate mediating pain-induced behavioral alterations.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Intranasal oxytocin alleviates comorbid depressive symptoms in neuropathic pain via elevating hippocampal BDNF production in both female and male mice

Rongjun Liu, Daofan Sun, Xiuzhong Xing, Qingge Chen, Bo Lu, Bo Meng, Hui Yuan, Lan Mo, Liufang Sheng, Jinwei Zheng, Qiusheng Wang, Junping Chen, Xiaowei Chen

Summary: The coexistence of pain and depression is frequently observed in patients with chronic pain and depression. Oxytocin, a neuropeptide, has been reported to relieve chronic pain and depressive symptoms. This study investigated the effect of intranasal oxytocin on neuropathic pain and comorbid depressive symptoms, and found that oxytocin attenuated depression-like behavior but did not alleviate mechanical hyperalgesia. The results suggest that intranasal oxytocin may have the potential to treat depressive symptoms in neuropathic pain patients.

NEUROPHARMACOLOGY (2024)