4.7 Article

Pharmacological evidence for the involvement of diacylglycerol lipase in depolarization-induced endocanabinoid release

Journal

NEUROPHARMACOLOGY
Volume 54, Issue 1, Pages 58-67

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2007.06.002

Keywords

2-arachidonoylglycerol; diacylglycerol lipase; CB1 cannabinoid receptor; depolarization-induced suppression of inhibition; tetrahydrolipstatin

Ask authors/readers for more resources

Depolarization-induced suppression of inhibition (DSI) or excitation (DSE) is a well-known form of endocannabinoid-mediated short-term plasticity that is induced by postsynaptic depolarization. It is generally accepted that DSI/DSE is triggered by Ca2+ influx through voltage-gated Ca-2 divided by channels. It is also demonstrated that DSI/DSE is mediated by 2-arachidonoylglycerol (2-AG). However, how Ca2+ induces 2-AG production is still unclear. In the present study, we investigated molecular mechanisms underlying the Ca2+-driven 2-AG production. Using cannabinoid-sensitive inhibitory synapses of cultured hippocampal neurons, we tested several inhibitors for enzymes that are supposed to be involved in 2-AG metabolism. The chemicals we tested include inhibitors for phospholipase C (U73122 and ET-18), diacylglycerol kinase (DGK inhibitor 1), phosphatidic acid phosphohydrolase (propranolol), and diacylglycerol lipase (DGL; RHC-80267 and tetrahydrolipstatin (THL)). However, unfavorable side effects were observed with these inhibitors, except for THL. Furthermore, we found that RHC-80267 hardly inhibited the endocannabinoid release driven by G(q/11)-coupled receptors, which is thought to be DGL-dependent. By contrast, THL exhibited no side effects as long as we tested, and was confirmed to inhibit the DGL-dependent process. Using THL as a DGL inhibitor, we demonstrated that DGL is involved in both hippocampal DSI and cerebellar DSE. To test a possible involvement of PLC delta in DSI, we examined hippocampal DSI in PLC delta 1,delta 3 and delta 4-knockout mice. However, there was no significant difference in the DSI magnitude between these knockout mice and wildtype mice. The present study clearly shows that DGL is a prerequisite for DSI/DSE. The enzymes yielding DG remain to be determined. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available