4.3 Article

Mitogen-Activated Protein Kinase Phosphatase (MKP)-1 as a Neuroprotective Agent: Promotion of the Morphological Development of Midbrain Dopaminergic Neurons

Journal

NEUROMOLECULAR MEDICINE
Volume 15, Issue 2, Pages 435-446

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12017-013-8230-5

Keywords

MKP-1; Dopaminergic neuron; p38; 6-OHDA; Growth; Development

Categories

Funding

  1. College of Medicine and Health, University College Cork
  2. Science Foundation Ireland [SFI/RFP/NSC1298, 10/RFP/NES2786]
  3. Irish Research Council for Science Engineering and Technology
  4. Science Foundation Ireland (SFI) [10/RFP/NES2786] Funding Source: Science Foundation Ireland (SFI)

Ask authors/readers for more resources

A greater understanding of the mechanisms that promote the survival and growth of dopaminergic neurons is essential for the advancement of cell replacement therapies for Parkinson's disease (PD). Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Here, we show that MKP-1 is expressed in dopaminergic neurons cultured from E14 rat ventral mesencephalon (VM). When dopaminergic neurons were transfected to overexpress MKP-1, they displayed a more complex morphology than their control counterparts in vitro. Specifically, MKP-1-transfection induced significant increases in neurite length and branching with a maximum increase observed in primary branches. We demonstrate that inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in vitro is mediated by p38 and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. We further show that overexpression of MKP-1 in dopaminergic neurons contributes to neuroprotection against the effects of 6-OHDA. Collectively, we report that MKP-1 can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Thus, we propose that strategies aimed at augmenting MKP-1 expression or activity may be beneficial in protecting dopaminergic neurons and may provide potential therapeutic approaches for PD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available