4.0 Article

Effect of 710-nm Visible Light Irradiation on Neuroprotection and Immune Function after Stroke

Journal

NEUROIMMUNOMODULATION
Volume 19, Issue 5, Pages 267-276

Publisher

KARGER
DOI: 10.1159/000335547

Keywords

Stroke; 710-nm visible light; Helper T lymphocyte; Phototherapy; Functional recovery

Funding

  1. National Research Foundation of Korea (NRF)
  2. Ministry of Education, Science and Technology [2009-0069851]
  3. National Research Foundation of Korea [2009-0069851] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Objective: The phototherapeutic effects of low level infrared laser irradiation (808 nm) on brain neuronal cell protection after stroke have been presented recently. We previously reported that 710-nm wavelength visible light (VIS) increases total lymphocyte counts in vivo, especially CD4(+) T lymphocytes. In this study, we investigated the effects of 710-nm VIS irradiation on neuronal protection and recovery correlating with cellular immunity in stroke rats. Methods: Rats were subjected to 90-min middle cerebral artery occlusion (MCAO) followed by reperfusion and were divided into two groups: irradiation and no irradiation. The irradiation group had been exposed to 710-nm VIS for 3 weeks after MCAO establishment or sham operation. The helper T cell (CD4+) count in the whole blood and infarct volume were measured. Messenger RNA expression levels of IL-4 and IL-10 in peripheral blood mononuclear cells were measured, a histologic study including microglia activation and regulatory T (Treg) cell markers, neurological severity scoring and a parallel bar walking test were all performed. Results: CD4(+) cell count was reduced after MCAO but was significantly increased by 710-nm VIS irradiation. The infarct sizes were decreased in the MCAO + irradiation group compared with the MCAO control group. IL-10 mRNA expression and the immunoreactivity of Treg cells were increased in the MCAO + irradiation group compared with the MCAO control group. Increased microglia activation after MCAO was reduced by 710-nm VIS irradiation. The irradiation group also showed improved neurological severity score levels and step fault scores after MCAO. Conclusions: Our data suggest that 710-nm VIS irradiation may activate cellular immunity, reduce brain infarction and ultimately induce functional recovery in a stroke animal model. Copyright (C) 2012 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available