4.6 Article

Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm

Journal

NEUROCOMPUTING
Volume 74, Issue 14-15, Pages 2299-2313

Publisher

ELSEVIER
DOI: 10.1016/j.neucom.2011.03.010

Keywords

Segmentation; MRI; Multilevel thresholding; Adaptive bacterial foraging; Kapur; Otsu

Ask authors/readers for more resources

Segmentation of brain magnetic resonance images (MRIs) can be used to identify various neural disorders. The MRI segmentation facilitates in extracting different brain tissues such as white matter, gray matter and cerebrospinal fluids. Segmentation of these tissues helps in determining the volume of the tissues in three-dimensional brain MRI, which yields in analyzing many neural disorders such as epilepsy and Alzheimer disease. In this article, multilevel thresholding based on adaptive bacterial foraging (ABF) algorithm is presented for brain MRI segmentation. The proposed ABF algorithm employs an adaptive step size to improve both exploration and exploitation capability of the BF algorithm. Maximization of the measure of separability on the basis of the entropy (Kapur) method and the between-class variance (Otsu) method, which are the two popular thresholding techniques, are employed to evaluate the performance of the proposed method. Application results to axial, T2-weighted brain MRI slices are provided to show the performance of the proposed segmentation approach. These results are compared with bacterial foraging (BF) algorithm, particle swarm optimization (PSO) algorithm and genetic algorithm (GA) in terms of solution quality, robustness and computational efficiency. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available