4.6 Article

Optimal operation of a smart residential microgrid based on model predictive control by considering uncertainties and storage impacts

Journal

SOLAR ENERGY
Volume 122, Issue -, Pages 1052-1065

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2015.10.027

Keywords

Residential microgrid; Home energy management system (HEMS); Model predictive control (MPC); Mixed-integer linear programming (MILP); Demand response

Categories

Ask authors/readers for more resources

A model predictive control (MPC) based coordinated operation framework for a grid-connected residential microgrid with considering forecast errors is presented in this paper. This residential microgrid composes renewable energy resources (e.g., wind and solar), distributed generators (e.g., CHP), energy storages (e.g., battery bank and water tank), electrical vehicle, and smart loads (e.g. HVAC and washing machine). A novel mixed integer linear programming (MILP) problem is optimized at each decision time, on the basis of the short-term forecasts of renewable energy resources generation, load demand, and electricity price. This MILP problem is integrated into a MPC framework to reduce the negative impacts of forecast errors. Case study which considers forecast uncertainties is implemented for evaluating the performance of the proposed method and the traditional method is used. Besides, peak power price mechanism which is used to smooth the power exchanged with external grid is also considered. Moreover, a further sensitivity analysis is realized in order to discuss the impacts of energy storage units on the microgrid operation. Simulation results show that the proposed method is economic and flexible. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available