4.5 Article

Age-dependent decline of blood-brain barrier P-glycoprotein expression in the canine brain

Journal

NEUROBIOLOGY OF AGING
Volume 32, Issue 8, Pages 1477-1485

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.neurobiolaging.2009.08.014

Keywords

P-glycoprotein; Canine; Blood-brain barrier; Aging; Brain; Plaques; Amyloid

Funding

  1. German Research Foundation [DFG PO 681/4-1]

Ask authors/readers for more resources

The efflux transporter P-glycoprotein serves as a major molecular gatekeeper at the blood-brain barrier. It has been suggested that a reduction of P-glycoprotein activity with aging might enhance exposure of brain tissue to exogenous and endogenous compounds thereby contributing to the development of neurodegenerative diseases. Brain tissue from owner-kept dogs renders an excellent tool to study the impact of aging on the background of variable environmental and genetic influencing factors. Therefore, we determined expression rates of P-glycoprotein in canine post-mortem tissue from 23 non-laboratory dogs. P-glycoprotein expression in the parahippocampal cortex exhibited a negative correlation with age. Analysis of the area labeled for P-glycoprotein in dogs aged>100 months revealed a 72% drop in P-glycoprotein expression as compared to young adults aged 23-36 months. Respective data from the dentate hilus and dentate gyrus indicated an earlier drop with a reduction by 77 and 80% in dogs aged 37-99 months in comparison with younger individuals. In contrast to the decline observed with aging in dogs without plaques, P-glycoprotein expression rates rather tended to increase with further aging in dogs with plaque formation. In conclusion, the thorough analysis of P-glycoprotein expression rates in non-laboratory dogs revealed a significant decline with aging. The data strongly support the concept that age-dependent changes might predispose to neurodegenerative diseases. In the early pathogenesis of Alzheimer's disease which is modelled by diffuse plaques in the canine brain, an up-regulation of P-glycoprotein might act as a compensatory mechanism to enhance Abeta efflux from the brain. Future studies are necessary to further evaluate the correlation between Abeta deposits and P-glycoprotein expression in different phases of the disease. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available