4.7 Article

A modeling study suggesting how a reduction in the context-dependent input on CA1 pyramidal neurons could generate schizophrenic behavior

Journal

NEURAL NETWORKS
Volume 24, Issue 6, Pages 552-559

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neunet.2011.01.001

Keywords

Schizophrenia; Realistic model; CA1; Hippocampus; Object recognition; Synaptic integration

Funding

  1. DEISA Consortium
  2. EU [RI-031513, RI-222919]

Ask authors/readers for more resources

The neural mechanisms underlying schizophrenic behavior are unknown and very difficult to investigate experimentally, although a few experimental and modeling studies suggested possible causes for some of the typical psychotic symptoms related to this disease. The brain region most involved in these processes seems to be the hippocampus, because of its critical role in establishing memories for objects or events in the context in which they occur. In particular, a hypofunction of the N-methyl-D-aspartate (NMDA) component of the synaptic input on the distal dendrites of CA1 pyramidal neurons has been suggested to play an important role for the emergence of schizophrenic behavior. Modeling studies have investigated this issue at the network and cellular level. Here, starting from the experimentally supported assumption that hippocampal neurons are very specific, sparse, and invariant in their firing, we explore an experimentally testable prediction at the single neuron level. The model shows how and to what extent a pathological hypofunction of a context-dependent distal input on a CA1 neuron can generate hallucinations by altering the normal recall of objects on which the neuron has been previously tuned. The results suggest that a change in the context during the recall phase may cause an occasional but very significant change in the set of active dendrites used for feature recognition, leading to a distorted perception of objects. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available