4.7 Article Proceedings Paper

Brain pathways for cognitive-emotional decision making in the human animal

Journal

NEURAL NETWORKS
Volume 22, Issue 3, Pages 286-293

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neunet.2009.03.003

Keywords

Decision making; Emotion; Cognitive-emotional interactions; Rules; Knowledge instinct

Ask authors/readers for more resources

As roles for different brain regions become clearer, a picture emerges of how primate prefrontal cortex executive circuitry influences subcortical decision making pathways inherited from other mammals. The human's basic needs or drives can be interpreted as residing in an on-center off-surround network in motivational regions of the hypothalamus and brain stem. Such a network has multiple attractors that, in this case, represent the amount of satisfaction of these needs, and we consider and interpret neurally a continuous-time simulated annealing algorithm for moving between attractors under the influence of noise that represents discontent combined with initiative. For decision making on specific tasks, we employ a variety of rules whose neural circuitry appears to involve the amygdala and the orbital, cingulate, and dorsolateral regions of prefrontal cortex. These areas can be interpreted as connected in a three-layer adaptive resonance network. The vigilance of the network, which is influenced by the state of the hypothalamic needs network, determines the level of sophistication of the rule being utilized. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Computer Science, Artificial Intelligence

Optimal control of nonlinear discrete time-varying systems using a new neural network approximation structure

Bahare Kiumarsi, Frank L. Lewis, Daniel S. Levine

NEUROCOMPUTING (2015)

Article Computer Science, Artificial Intelligence

Multiple Actor-Critic Structures for Continuous-Time Optimal Control Using Input-Output Data

Ruizhuo Song, Frank Lewis, Qinglai Wei, Hua-Guang Zhang, Zhong-Ping Jiang, Dan Levine

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2015)

Article Computer Science, Artificial Intelligence

Neural dynamics of affect, gist, probability, and choice

Daniel S. Levine

COGNITIVE SYSTEMS RESEARCH (2012)

Article Computer Science, Artificial Intelligence

The Drive for Creativity and the Escape from Creativity: Neurocognitive Mechanisms

Leonid I. Perlovsky, Daniel S. Levine

COGNITIVE COMPUTATION (2012)

Article Psychology, Multidisciplinary

The Dark Triad trait of psychopathy and message framing predict risky decision-making during the COVID-19 pandemic

Stephen M. Doerfler, Maryam Tajmirriyahi, Amandeep Dhaliwal, Aaron J. Bradetich, William Ickes, Daniel S. Levine

Summary: This study investigated the impact of message framing on risky decision-making during the COVID-19 crisis, finding that both gain- and loss-framing influenced risk choice. Among the Dark Triad traits, psychopathy emerged as a significant predictor of risk taking behavior. The study suggests that decision-makers with psychopathic tendencies may take greater risks with other people's lives during a pandemic.

INTERNATIONAL JOURNAL OF PSYCHOLOGY (2021)

Proceedings Paper Computer Science, Artificial Intelligence

Neural Network Modeling of Business Decision Making

Daniel S. Levine, Kay-Yut Chen, Bakur AlQaudi

2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) (2017)

Article Computer Science, Artificial Intelligence

Modeling the instinctive-emotional-thoughtful mind

Daniel S. Levine

COGNITIVE SYSTEMS RESEARCH (2017)

Proceedings Paper Computer Science, Artificial Intelligence

Toward a Neuro-developmental Theory of Decision Attribute Weighting

Daniel S. Levine

2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) (2016)

Article Social Sciences, Mathematical Methods

Response-Scale Formats and Psychological Distances Between Categories

Tyler Hamby, Daniel S. Levine

APPLIED PSYCHOLOGICAL MEASUREMENT (2016)

Proceedings Paper Computer Science, Artificial Intelligence

A Neural Network Model of Decisions on the Asian Disease Problem

Bakur AlQaudi, Daniel S. Levine, Frank L. Lewis

2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) (2015)

Proceedings Paper Computer Science, Artificial Intelligence

I Think Therefore I Feel: Possible Neural Mechanisms for Knowledge-based Pleasure

Daniel S. Levine

2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) (2012)

Proceedings Paper Computer Science, Artificial Intelligence

Neurohydrodynamics as a heuristic mechanism for cognitive processes in decision-making

Leon C. Hardy, Daniel S. Levine, Dahai Liu

2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) (2012)

Article Psychology, Applied

Modeling Ideational Creativity in Groups: Connecting Cognitive, Neural, and Computational Approaches

Paul B. Paulus, Daniel S. Levine, Vincent Brown, Ali A. Minai, Simona Doboli

SMALL GROUP RESEARCH (2010)

Article Computer Science, Artificial Intelligence

Reduced-complexity Convolutional Neural Network in the compressed domain

Hamdan Abdellatef, Lina J. Karam

Summary: This paper proposes performing the learning and inference processes in the compressed domain to reduce computational complexity and improve speed of neural networks. Experimental results show that modified ResNet-50 in the compressed domain is 70% faster than traditional spatial-based ResNet-50 while maintaining similar accuracy. Additionally, a preprocessing step with partial encoding is suggested to improve resilience to distortions caused by low-quality encoded images. Training a network with highly compressed data can achieve good classification accuracy with significantly reduced storage requirements.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Theoretical limits on the speed of learning inverse models explain the rate of adaptation in arm reaching tasks

Victor R. Barradas, Yasuharu Koike, Nicolas Schweighofer

Summary: Inverse models are essential for human motor learning as they map desired actions to motor commands. The shape of the error surface and the distribution of targets in a task play a crucial role in determining the speed of learning.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Learning a robust foundation model against clean-label data poisoning attacks at downstream tasks

Ting Zhou, Hanshu Yan, Jingfeng Zhang, Lei Liu, Bo Han

Summary: We propose a defense strategy that reduces the success rate of data poisoning attacks in downstream tasks by pre-training a robust foundation model.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

AdaSAM: Boosting sharpness-aware minimization with adaptive learning rate and momentum for neural networks

Hao Sun, Li Shen, Qihuang Zhong, Liang Ding, Shixiang Chen, Jingwei Sun, Jing Li, Guangzhong Sun, Dacheng Tao

Summary: In this paper, the convergence rate of AdaSAM in the stochastic non-convex setting is analyzed. Theoretical proof shows that AdaSAM has a linear speedup property and decouples the stochastic gradient steps with the adaptive learning rate and perturbed gradient. Experimental results demonstrate that AdaSAM outperforms other optimizers in terms of performance.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Grasping detection of dual manipulators based on Markov decision process with neural network

Juntong Yun, Du Jiang, Li Huang, Bo Tao, Shangchun Liao, Ying Liu, Xin Liu, Gongfa Li, Disi Chen, Baojia Chen

Summary: In this study, a dual manipulator grasping detection model based on the Markov decision process is proposed. By parameterizing the grasping detection model of dual manipulators using a cross entropy convolutional neural network and a full convolutional neural network, stable grasping of complex multiple objects is achieved. Robot grasping experiments were conducted to verify the feasibility and superiority of this method.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Asymmetric double networks mutual teaching for unsupervised person Re-identification

Miaohui Zhang, Kaifang Li, Jianxin Ma, Xile Wang

Summary: This paper proposes an unsupervised person re-identification (Re-ID) method that uses two asymmetric networks to generate pseudo-labels for each other by clustering and updates and optimizes the pseudo-labels through alternate training. It also designs similarity compensation and similarity suppression based on the camera ID of pedestrian images to optimize the similarity measure. Extensive experiments show that the proposed method achieves superior performance compared to state-of-the-art unsupervised person re-identification methods.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Low-variance Forward Gradients using Direct Feedback Alignment and momentum

Florian Bacho, Dominique Chu

Summary: This paper proposes a new approach called the Forward Direct Feedback Alignment algorithm for supervised learning in deep neural networks. By combining activity-perturbed forward gradients, direct feedback alignment, and momentum, this method achieves better performance and convergence speed compared to other local alternatives to backpropagation.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Maximum margin and global criterion based-recursive feature selection

Xiaojian Ding, Yi Li, Shilin Chen

Summary: This research paper addresses the limitations of recursive feature elimination (RFE) and its variants in high-dimensional feature selection tasks. The proposed algorithms, which introduce a novel feature ranking criterion and an optimal feature subset evaluation algorithm, outperform current state-of-the-art methods.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Mental image reconstruction from human brain activity: Neural decoding of mental imagery via deep neural network-based Bayesian estimation

Naoko Koide-Majima, Shinji Nishimoto, Kei Majima

Summary: Visual images observed by humans can be reconstructed from brain activity, and the visualization of arbitrary natural images from mental imagery has been achieved through an improved method. This study provides a unique tool for directly investigating the subjective contents of the brain.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Hierarchical attention network with progressive feature fusion for facial expression recognition

Huanjie Tao, Qianyue Duan

Summary: In this paper, a hierarchical attention network with progressive feature fusion is proposed for facial expression recognition (FER), addressing the challenges posed by pose variation, occlusions, and illumination variation. The model achieves enhanced performance by aggregating diverse features and progressively enhancing discriminative features.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

SLAPP: Subgraph-level attention-based performance prediction for deep learning models

Zhenyi Wang, Pengfei Yang, Linwei Hu, Bowen Zhang, Chengmin Lin, Wenkai Lv, Quan Wang

Summary: In the face of the complex landscape of deep learning, we propose a novel subgraph-level performance prediction method called SLAPP, which combines graph and operator features through an innovative graph neural network called EAGAT, providing accurate performance predictions. In addition, we introduce a mixed loss design with dynamic weight adjustment to improve predictive accuracy.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

LDCNet: Lightweight dynamic convolution network for laparoscopic procedures image segmentation

Yiyang Yin, Shuangling Luo, Jun Zhou, Liang Kang, Calvin Yu-Chian Chen

Summary: Medical image segmentation is crucial for modern healthcare systems, especially in reducing surgical risks and planning treatments. Transanal total mesorectal excision (TaTME) has become an important method for treating colon and rectum cancers. Real-time instance segmentation during TaTME surgeries can assist surgeons in minimizing risks. However, the dynamic variations in TaTME images pose challenges for accurate instance segmentation.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

start-stop points CenterNet for wideband signals detection and time-frequency localization in spectrum sensing

Teng Cheng, Lei Sun, Junning Zhang, Jinling Wang, Zhanyang Wei

Summary: This study proposes a scheme that combines the start-stop point signal features for wideband multi-signal detection, called Fast Spectrum-Size Self-Training network (FSSNet). By utilizing start-stop points to build the signal model, this method successfully solves the difficulty of existing deep learning methods in detecting discontinuous signals and achieves satisfactory detection speed.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Learning deep representation and discriminative features for clustering of multi-layer networks

Wenming Wu, Xiaoke Ma, Quan Wang, Maoguo Gong, Quanxue Gao

Summary: The layer-specific modules in multi-layer networks are critical for understanding the structure and function of the system. However, existing methods fail to accurately characterize and balance the connectivity and specificity of these modules. To address this issue, a joint learning graph clustering algorithm (DRDF) is proposed, which learns the deep representation and discriminative features of the multi-layer network, and balances the connectivity and specificity of the layer-specific modules through joint learning.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Boundary uncertainty aware network for automated polyp segmentation

Guanghui Yue, Guibin Zhuo, Weiqing Yan, Tianwei Zhou, Chang Tang, Peng Yang, Tianfu Wang

Summary: This paper proposes a novel boundary uncertainty aware network (BUNet) for precise and robust colorectal polyp segmentation. BUNet utilizes a pyramid vision transformer encoder to learn multi-scale features and incorporates a boundary exploration module (BEM) and a boundary uncertainty aware module (BUM) to handle boundary areas. Experimental results demonstrate that BUNet outperforms other methods in terms of performance and generalization ability.

NEURAL NETWORKS (2024)