3.9 Article

Increased acid load and deletion of AE1 increase Slc26a7 expression

Journal

NEPHRON PHYSIOLOGY
Volume 109, Issue 3, Pages 29-35

Publisher

KARGER
DOI: 10.1159/000145465

Keywords

-

Funding

  1. American Society of Nephrology
  2. American Heart Association
  3. Paul Teschan Research Fund
  4. Dialysis Clinic, Inc.

Ask authors/readers for more resources

Background/Aims: Slc26a7 is a member of a family of anion transport proteins, Solute-Linked Carrier 26 (Slc26). Slc26a7, which can mediate Cl-/HCO3- exchange, is expressed in the acid-secreting, A-intercalated cells of the kidney collecting duct. On the basolateral side of the A-intercalated cells, Slc26a7 co-localizes with the anion exchanger 1 (AE1), a Cl-/HCO3- exchanger that mediates bicarbonate reabsorption in the collecting duct. Methods: To test if Slc26a7 is involved in acid-base regulation, as its localization and function suggest, we examined the effect of acid loading and deletion of AE1 on Slc26a7 expression with quantitative real-time RTPCR and Western blotting. Results: Four days of acid loading increased Slc26a7 mRNA expression in the kidney inner medulla by 57% (n = 6 acid loaded vs. n = 6 control rats; p < 0.001), whereas mRNA expression in the outer medulla and the cortex did not change. Western blotting analysis demonstrated increased Slc26a7 protein expression in both outer (140%) and inner medulla (50%) in acid-loaded animals (n = 3) compared to controls (n = 3; p < 0.05). The expression of Slc26a7 mRNA was increased by 66% in the kidneys of AE1 knockout mice (n = 5) compared to the wild types (n = 5, p < 0.001). The increase in Slc26a7 mRNA correlated with a twofold increase in protein expression (p < 0.05). Conclusion: We suggest that the increase in Slc26a7 expression caused by acid challenge and deletion of AE1 represents an adaptive response, indicating that Slc26a7 contributes to the regulation of acid-base balance by the kidney. Copyright (c) 2008 S. Karger AG, Basel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available