4.7 Article

Ultrasonic guided waves for health monitoring of high-pressure composite tanks

Journal

NDT & E INTERNATIONAL
Volume 41, Issue 8, Pages 648-655

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ndteint.2008.03.010

Keywords

Guided waves; NDT; Ageing; Complex structures

Funding

  1. EADS ASTRIUM, France
  2. Conseil Regional Aquitain, France

Ask authors/readers for more resources

Ultrasonic guided wave modes are proposed to control the integrity of high-pressure composite tanks produced by EADS-ASTRIUM, France. The purpose is to demonstrate the potentiality of air-coupled transducers to set Lip a contact-less, single-sided technique for testing the moisture content and/or the micro-cracking of carbon-epoxy composite wound around a Titanium liner. Although guided waves have been experimentally propagated on a real tank, it was not allowed to damage this specimen. Therefore, plates made of similar composite materials than that Constituting the tank winding were Submitted to water intake or to thermal stresses. After immersing some plates in a humid chamber, it was demonstrated that the attenuation of the A(0) guided wave mode is sensitive to the moisture content. Other plate samples were Submitted to immersion in liquid nitrogen that induces transversal cracks shown to cause significant drops in the celerity of several guided waves. Inverse problems have been used for quantifying the effects of these damages on the material properties, and they showed that water intake increases the imaginary part of the Coulomb moduli, while micro-cracking decreases all the material stiffness moduli. Such changes in the material properties have then been used as input data for simulating waveforms corresponding to the propagation Of Circumferential or longitudinal wave modes in the tank. Changes in these waveforms, caused by simulated damages of the composite winding of the tank, have been shown to be quite significant. To conclude the study, an experimental sep-up using air-coupled transducers was employed to generate-detect guided wave modes over large distances in the real tank, with very good signal-to-noise ratios, thus demonstrating the possibility of using Such elements for the non-destructive testing of high-pressure composite tanks during their lives. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Materials Science, Characterization & Testing

A percussion method with attention mechanism and feature aggregation for detecting internal cavities in timber

Bin Ma, Qingzhao Kong, Yewei Ding, Lin Chen, Weihang Gao

Summary: This study proposes an end-to-end damage detection framework that integrates emphasized channel attention, propagation, and aggregation-time-delay neural network (ECAPA-TDNN) with percussion techniques. The framework effectively detects internal damage within timber structures and distinguishes between different sizes of damage.

NDT & E INTERNATIONAL (2024)

Article Materials Science, Characterization & Testing

Discretized tensor-based model of total focusing method: A sparse regularization approach for enhanced ultrasonic phased array imaging

Zhiyuan Zhao, Lishuai Liu, Wen Liu, Da Teng, Yanxun Xiang, Fu-Zhen Xuan

Summary: The total focusing method (TFM) is a standard technique in ultrasonic phased array imaging and plays a crucial role in industrial non-destructive testing (NDT). This paper presents an improved TFM approach by formulating its imaging principle as a Boolean matrix and establishing a discretized tensor-based model. By employing sparse regularization strategy and a non-negative constraint solution algorithm, the proposed approach demonstrates superior capabilities in defect characterization and noise suppression compared to the traditional TFM.

NDT & E INTERNATIONAL (2024)

Article Materials Science, Characterization & Testing

Non-destructive method for evaluating local integrity of model piles using electromagnetic waves

Dongsoo Lee, Jung-Doung Yu, Seokgyu Jeong, Geunwoo Park, Jong-Sub Lee

Summary: This study suggests a more accurate method for evaluating the integrity of drilled shafts using electromagnetic waves propagating through transmission lines. The experimental results show that the location and size of sound and defect segments can be more clearly identified with the use of connectors on the transmission line.

NDT & E INTERNATIONAL (2024)

Article Materials Science, Characterization & Testing

Laser ultrasonic imaging of defect in bimetallic media with frequency domain synthetic aperture focusing technology

Lu-Nan Dai, Chen-Yin Ni, Kai-Ning Ying, Ling Yuan, Zhi Yang, Wei-Wei Kan, Zhong-Hua Shen

Summary: A laser ultrasonics based frequency domain synthetic aperture focusing technology has been developed for imaging internal horizontal hole defects in bimetallic composites with a diameter of approximately 1.0 mm. The results show that this technology can improve imaging quality and locating capability, with a low testing error.

NDT & E INTERNATIONAL (2024)

Article Materials Science, Characterization & Testing

Automatic estimation of surface and probe location for 3D imaging with bidimensional arrays

Guillermo Cosarinsky, Jorge F. Cruza, Mario Munoz, Jorge Camacho

Summary: This study develops an ultrasound imaging method for industrial and structural components, which can automatically detect the surface and estimate the probe position and orientation. By fitting the parametric models based on measured surface echoes, the method achieves the measurement of surface echoes and estimation of probe position and orientation. Validation experiments show that this method can accurately detect defects in the component under different probe positions and orientations.

NDT & E INTERNATIONAL (2024)

Article Materials Science, Characterization & Testing

One-dimensional photothermal characterization of subsurface interfaces utilizing the virtual wave concept

L. Gahleitner, G. Thummerer, G. Mayr, G. Mayr, P. Burgholzer, U. Cakmak

Summary: This study presents a one-dimensional photothermal method using the virtual wave concept to estimate subsurface interface parameters and demonstrates its application in layered materials. Experimental results validate the accurate estimation of interfacial parameters for the analyzed samples.

NDT & E INTERNATIONAL (2024)

Article Materials Science, Characterization & Testing

Fusional laminography: A strategy for exact reconstruction on CL and CT information complementation

Pengxiang Ji, Yiming Jiang, Ruobing Zhao, Jing Zou

Summary: Computed laminography (CL) is a non-destructive imaging technique for plate-like samples that has challenges in exact reconstruction. Fusion laminography (FL) combines Fourier information from CL and CT to achieve precise reconstruction, showing superiority in artifact removal and edge preservation, particularly for irregular sample structures.

NDT & E INTERNATIONAL (2024)

Article Materials Science, Characterization & Testing

Evaluation of nonlinear interface areas in a multiple scattering medium by Nonlinear Coda Wave Interferometry (NCWI): Experimental studies

Guangzhi Chen, Odile Abraham, Damien Pageot, Olivier Durand, Mathieu Chekroun, Vincent Tournat

Summary: This paper investigates the application of Nonlinear Coda Wave Interferometry (NCWI) method in evaluating the nonlinear interface areas in highly heterogeneous materials. An experimental protocol is proposed and validated through numerical simulation and experimental results. The findings demonstrate that NCWI can be used to quantitatively analyze the nonlinear interface effects in complex media.

NDT & E INTERNATIONAL (2024)

Article Materials Science, Characterization & Testing

Frequency dependent amplitude response of different couplant materials for mounting piezoelectric sensors

Ronghua Xu, Raul Enrique Beltran-Gutierrez, Max Kaeding, Alexander Lange, Steffen Marx, Joern Ostermann

Summary: This study compares the signal response of four different couplant materials in acoustic emission analysis and ultrasonic testing, and analyzes their impact on the signal response of a piezoelectric sensor. The results indicate that acrylic adhesive pads and hot glue demonstrate more reliable signal transmission in certain frequency ranges, while honey and vaseline perform better in other frequency ranges. Acrylic adhesive pads and honey are considered the preferred couplant materials.

NDT & E INTERNATIONAL (2024)

Article Materials Science, Characterization & Testing

Automated data evaluation in phased-array ultrasonic testing based on A-scan and feature training

Yong-Ho Kim, Jung-Ryul Lee

Summary: An artificial intelligence system for phased-array ultrasonic testing (PAUT) was developed in this study using a newly configured training dataset and neural network. Three experiments were conducted to verify its performance, showing improved classification accuracy of signals and successful data evaluation, benefiting the PAUT experts.

NDT & E INTERNATIONAL (2024)

Article Materials Science, Characterization & Testing

A comparison of methods for generating synthetic training data for domain adaption of deep learning models in ultrasonic non-destructive evaluation

Shaun Mcknight, S. Gareth Pierce, Ehsan Mohseni, Christopher Mackinnon, Charles Macleod, Tom 'Hare, Charalampos Loukas

Summary: This work proposes four synthetic data generation methods to address the issue of limited training data in Non-Destructive Ultrasonic Testing. Experimental results demonstrate that these methods significantly improve the classification performance of real experimental images.

NDT & E INTERNATIONAL (2024)

Article Materials Science, Characterization & Testing

Data fusion of multi-view plane wave imaging for nozzle weld inspection

Xintao Xu, Zhixuan Chang, Eryong Wu, Shiwei Wu, Jian Chen, Keji Yang, Haoran Jin

Summary: This paper proposes a novel nozzle-side inspection method based on the data fusion of multi-view plane wave imaging (PWI) for ultrasonic non-destructive testing of nozzle-to-pipe welds. Experiments demonstrate the capability of sensitivity mappings to optimize the inspection configuration and serve as filters to fuse multi-view images. The proposed method enables accurate defect characterization and detection of slag, cracks, and lack of penetration in nozzle specimens.

NDT & E INTERNATIONAL (2024)

Article Materials Science, Characterization & Testing

Analytical insight into local defect resonance induced by disbond in multilayered structures

Kai Wang, Zechen Luo, Shuang Xu, Wenxin Lai, Ruiqi Guan, Qijian Liu, Menglong Liu, Jing Rao, Xinlin Qing

Summary: In this study, an analytical framework is proposed to interpret the formation of defect-induced LDR in multilayered structures. By analyzing the reflections of Lamb waves at defect boundaries and obtaining the phase shift of reflected waves, the relationship between LDR frequency components and defect size is determined. Experimental validations are performed to improve the precision of defect characterization using LDR.

NDT & E INTERNATIONAL (2024)

Article Materials Science, Characterization & Testing

Profile reconstruction of irregular planar defects by mirrored composite-mode total focusing method

Shijie Jin, Chengjun Di, Jiakai Su, Siqi Shi, Zhongbing Luo

Summary: This paper proposes a mirrored composite-mode total focusing method (CTFM) for the quantitative detection and profile characterization of priori unknown irregular planar defects. Multiple views and normalization are used to achieve accurate imaging results.

NDT & E INTERNATIONAL (2024)