4.5 Article Proceedings Paper

A selective T-type Ca2+ channel blocker R(-) efonidipine

Journal

NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY
Volume 377, Issue 4-6, Pages 411-421

Publisher

SPRINGER
DOI: 10.1007/s00210-007-0239-6

Keywords

Ca2+ channels; T-type; hippocampal CA1 neuron; R(-) efonidipine

Ask authors/readers for more resources

Recently, novel compound R(-) efonidipine was reported to selectively block low-voltage-activated (LVA or T-type) Ca2+ channels in peripheral organs. We examined how R(-) efonidipine acts on T-type and high-voltage-activated (HVA) Ca2+ channels in mammalian central nervous system (CNS) neurons. Furthermore, we compared the effects of R(-) efonidipine with those of flunarizine and mibefradil on both T-type and HVA Ca2+ channels in rat hippocampal CA1 neurons by using the nystatin perforated-patch clamp technique. Flunarizine and mibefradil nonselectively inhibited both T-type and HVA Ca2+ channels, though the dose-dependent blocking potency of flunarizine on T-type Ca2+ channels was slightly stronger than that of mibefradil. In contrast, R(-) efonidipine inhibited only T-type Ca2+ channels and did not show any effect on HVA Ca2+ channels. The inhibitory actions of R(-) efonidipine or flunarizine were similar on both Ba2+ and Ca2+ current components passing through T-type Ca2+ channels. In addition, flunarizine but not R(-) efonidipine inhibited voltage-dependent Na+ channels and Ca2+-activated K+ channels. Thus, it appears that R(-) efonidipine is a selective blocker for T-type Ca2+ channels. It could be used as a pharmacological tool in future studies on T-type Ca2+ channels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available