4.7 Article

Disentangling the functional consequences of the connectivity between optic-flow processing neurons

Journal

NATURE NEUROSCIENCE
Volume 15, Issue 3, Pages 441-U132

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn.3044

Keywords

-

Categories

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [1091]
  2. Max Planck Society

Ask authors/readers for more resources

Typically, neurons in sensory areas are highly interconnected. Coupling two neurons can synchronize their activity and affect a variety of single-cell properties, such as their stimulus tuning, firing rate or gain. All of these factors must be considered to understand how two neurons should be coupled to optimally process stimuli. We quantified the functional effect of an interaction between two optic-flow processing neurons (Vi and H1) in the fly (Lucilia sericata). Using a generative model, we estimated a uni-directional coupling from H1 to Vi. Especially at a low signal-to-noise ratio (SNR), the coupling strongly improved the information about optic-flow in Vi. We identified two constraints confining the strength of the interaction. First, for weak couplings, Vi benefited from inputs by H1 without a concomitant shift of its stimulus tuning. Second, at both low and high SNR, the coupling strength lay in a range in which the information carried by single spikes is optimal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available