4.8 Article

Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes

Journal

NATURE CHEMISTRY
Volume 2, Issue 4, Pages 286-293

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NCHEM.553

Keywords

-

Funding

  1. National Science and Engineering Research Council (NSERC, Canada)
  2. McMaster University

Ask authors/readers for more resources

Shape- and size-controlled supported metal and intermetallic nanocrystallites are of increasing interest because of their catalytic and electrocatalytic properties. In particular, intermetallics PtX (X=Bi, Pb, Pd, Ru) are very attractive because of their high activity as fuel-cell anode catalysts for formic acid or methanol oxidation. These are normally synthesized using high-temperature techniques, but rigorous size control is very challenging. Even low-temperature techniques typically produce nanoparticles with dimensions much greater than the optimum <6 nm required for fuel cell catalysis. Here, we present a simple and robust, chemically controlled process for synthesizing size-controlled noble metal or bimetallic nanocrystallites embedded within the porous structure of ordered mesoporous carbon (OMC). By using surface-modified ordered mesoporous carbon to trap the metal precursors, nanocrystallites are formed with monodisperse sizes as low as 1.5 nm, which can be tuned up to similar to 3.5 nm. To the best of our knowledge, 3-nm ordered mesoporous carbon-supported PtBi nanoparticles exhibit the highest mass activity for formic acid oxidation reported to date, and over double that of Pt-Au.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available