4.6 Article

Engineering of a Pluronic F127 functionalized magnetite/graphene nanohybrid for chemophototherapy

Journal

NANOTECHNOLOGY
Volume 25, Issue 6, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/25/6/065602

Keywords

graphene; Pluronic F127; Fe3O4; nanohybrid; chemophototherapy

Funding

  1. 973 program [2013CB967500]
  2. National Natural Science Foundation of China [21104059, 51173136, 51073121]
  3. Shanghai Rising-Star Program [12QA1403400]
  4. 'Chen Guang' project
  5. Shanghai Municipal Education Commission
  6. Shanghai Education Development Foundation

Ask authors/readers for more resources

In this study, a multifunctional graphene based nanohybrid, termed as GN/Fe3O4/PF127, is engineered via a facile one-pot process consisting of simultaneous reduction of graphene oxide/Fe3O4 and subsequent assembly of Pluronic F127 (PF127) onto graphene nanosheets (GNs). The unique aromatic and planar structure of GNs allows the attachment of multiple functional components including MRI contrast agent (Fe3O4 nanoparticles) and an aromatic anticancer drug like doxorubicin (DOX), as well as PF127 coating which imparts physiological dispersivity and stability to the nanohybrid. The successful assembly process is revealed by TEM observation, size and FITR monitoring. In contrast with the primitive graphene or its oxide derivative, the resulting GN/Fe3O4/PF127 nanohybrids have shown high biological dispersion and MRI effect for diagnosis due to the incorporation of superparamagnetic Fe3O4 nanoparticles without evident cytotoxicity. Moreover, the GN/Fe3O4/PF127 nanohybrid exhibits a photothermal effect due to the considerable optical absorption in the near-infrared region of GNs. The GN/Fe3O4/PF127 nanohybrid could be a further platform for chemophototherapy assisted by the therapeutic DOX. Cellular toxicity assays indicated that the DOX-loaded GN/Fe3O4/PF127 nanohybrid showed a remarkable cytotoxicity to HeLa cells and the cytotoxic effect was intensified when subjected to photoirradiation. Confocal laser scanning microscopy (CLSM) and flow cytometric analysis (FCAS) revealed that the nanohybrid could be easily uptaken into HeLa cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available