4.6 Article

Significant reduction of thermal conductivity in silicon nanowire arrays

Journal

NANOTECHNOLOGY
Volume 24, Issue 50, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/24/50/505718

Keywords

-

Funding

  1. National Basic Research Program of China [2010CB832905]
  2. Ministry of Education of China [108124]

Ask authors/readers for more resources

Vertically aligned single-crystal silicon nanowire arrays (SiNWs) with various lengths, surface roughnesses and porosities were fabricated with the metal-assisted chemical etching method. Using the laser flash technique and differential scanning calorimetry, we characterized the thermal conductivities of bulk SiNWs/Si/SiNWs sandwich-structured composites (SSCs) at room temperature (300 K). The results demonstrate that the thermal conductivities of SSCs notably decrease with increases in the length, surface roughness and porosity of SiNWs. Furthermore, based on the series thermal-resistance model, we calculated the thermal conductivity of porous SiNWs to be as low as 1.68 W m(-1) K-1 at 300 K. Considering the remarkable phonon scattering from the diameter, surface roughness and porosity of SiNWs, leading to a significant reduction of the thermal conductivity, SSCs and SiNWs could be applied to high-performance thermoelectric devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available