4.6 Article

Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance

Journal

NANOTECHNOLOGY
Volume 24, Issue 45, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/24/45/455501

Keywords

-

Funding

  1. Grants-in-Aid for Scientific Research [23360376, 24656513] Funding Source: KAKEN

Ask authors/readers for more resources

A temperature sensor was fabricated from a polymer nanocomposite with multi-walled carbon nanotube (MWCNT) as nanofiller (i.e., MWCNT/epoxy). The electrical resistance and temperature coefficient of resistance (TCR) of the temperature sensor were characterized experimentally. The effects of temperature (within the range 333-373 K) and MWCNT content (within the range 1-5 wt%) were investigated thoroughly. It was found that the resistance increases with increasing temperature and decreasing MWCNT content. However, the resistance change ratio related to the TCR increases with increasing temperature and MWCNT content. The highest value of TCR (0.021 K-1), which was observed in the case of 5 wt% MWCNT, is much higher than those of traditional metals and MWCNT-based temperature sensors. Moreover, the corresponding numerical simulation-conducted to explain the above temperature-dependent piezoresistivity of the nanocomposite temperature sensor-indicated the key role of a temperature-dependent tunneling effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available