4.6 Article

Nanosized corners for trapping and detecting magnetic nanoparticles

Journal

NANOTECHNOLOGY
Volume 20, Issue 38, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/20/38/385501

Keywords

-

Funding

  1. Fondazione Cariplo via the project SpinBioMed [2008.2330]
  2. Department of Industry, Trade, and Tourism of the Basque Government, the Provincial Council Gipuzkoa [IE06-172]
  3. Spanish MICINN [CSD2006-53]
  4. EU [IEF-GA-2008-220166]
  5. US NSF [ECCS-0823813]
  6. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

Ask authors/readers for more resources

We present a device concept based on controlled micromagnetic configurations in a corner-shaped permalloy nanostructure terminated with two circular disks, specifically designed for the capture and detection of a small number of magnetic beads in suspension. A transverse head-to-head domain wall (TDW) placed at the corner of the structure plays the role of an attracting pole for magnetic beads. The TDW is annihilated in the terminating disks by applying an appropriate magnetic field, whose value is affected by the presence of beads chemically bound to the surface. In the case where the beads are not chemically bound to the surface, the annihilation of the TDW causes their release into the suspension. The variation of the voltage drop across the corner, due to the anisotropic magnetoresistance (AMR) while sweeping the magnetic field, is used to detect the presence of a chemically bound bead. The device response has been characterized by using both synthetic antiferromagnetic nanoparticles (disks of 70 nm diameter and 20 nm height) and magnetic nanobeads, for different thicknesses of the protective capping layer. We demonstrate the detection down to a single nanoparticle, therefore the device holds the potential for the localization and detection of small numbers of molecules immobilized on the particle's functionalized surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available