4.6 Article

Morphological control of CuPc and its application in organic solar cells

Journal

NANOTECHNOLOGY
Volume 19, Issue 41, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/19/41/415603

Keywords

-

Funding

  1. National Science Council [NSC 96-2221E-009-015]
  2. Ministry of Economic Affairs, Taiwan

Ask authors/readers for more resources

We have prepared organic photovoltaic (OPV) cells possessing an ideal bulk heterojunction (BHJ) structure using the self-assembly of copper phthalocyanine (CuPc) as the donor material and fullerene (C(60)) as the acceptor. The variable self-assembly behavior of CuPc on a diverse range of substrates (surface energies) allowed us to control the morphology of the interface and the degree of carrier transportation within the active layer. We observed rod-like CuPc structures on indium-tin oxide (ITO), poly(3,4-ethylenedioxythiophene)poly(4-styrenesulfonate) (PEDOT: PSS) and Au substrates. Accordingly, the interfaces and continuing transport path between CuPc and fullerene domains could be greatly improved due to the ideal BHJ structure. In this paper, we discuss the mechanisms of producing CuPc rod-like films on ITO, PEDOT: PSS and Au. The OPV cell performance was greatly enhanced when a mixture of horizontal and vertical CuPc rods was present on the PEDOT: PSS surfaces, i.e. the power conversion efficiency was 50 times greater than that of the corresponding device featuring a planar CuPc structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available