4.6 Article

The effects of oxygen on the surface passivation of InP nanowires

Journal

NANOTECHNOLOGY
Volume 19, Issue 6, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/19/6/065203

Keywords

-

Ask authors/readers for more resources

The effects of surface passivation on the electronic and structural properties of InP nanowires have been investigated by first-principles calculations. We compare the properties of nanowires whose surfaces have been passivated in several ways, always by H atoms and OH radicals. Taking as the initial reference nanowires that are fully passivated by H atoms, we find that the exchange of these atoms at the surface by OH radicals is always energetically favorable. A nanowire fully passivated by OH radicals is about 2.5 eV per passivated dangling bond more stable than a nanowire fully passivated by H atoms. However, the energetically most stable passivated surface is predicted to have all In atoms bonded to OH radicals and all P atoms bonded to H atoms. This mixed passivation is 2.66 eV per passivated dangling bond more stable than a nanowire fully passivated by H atoms. Our results show that, in comparison with the fully H-saturated nanowire, the fully OH-saturated nanowire has a smaller energy band gap and localized states near the energy band edges. Also, more interestingly, concerning optical applications, the most stable H + OH passivated nanowire has a well-defined energy band gap, only 10% smaller than the H-saturated nanowire energy gap, and few localized states always close to the valence band maximum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available