4.8 Article

Stable micelles based on a mixture of coiled-coils: the role of different oligomeric states

Journal

NANOSCALE
Volume 10, Issue 16, Pages 7589-7596

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr09695j

Keywords

-

Funding

  1. Office of Naval Research [N00014-13-1-0760]

Ask authors/readers for more resources

Homomeric micelles with tunable size, shape and stability have been extensively studied for biomedical applications such as drug carriers. However, designing the local valency and self-assembled morphology of nanophase-separated multicomponent micelles with varied ligand binding possibilities remains challenging. Here, we present micelles self-assembled from amphiphilic peptide-PEG-lipid hybrid conjugates, where the peptides can be either a 3-helix or 4-helix coiled-coil. We demonstrate that the micelle size and sphericity can be controlled based on the coiled-coil oligomeric state. Using theory and coarse-grained dissipative particle dynamics (DPD) simulations in an explicit solvent simulation, we studied the distribution of 3-helix and 4-helix conjugates within the mixed micelles and observed self-organization into nanodomains within the mixed micelle. We discovered that the phase separation behavior is dictated by the geometry mismatch in the alkyl chain length from different coiled-coil oligomeric states. Our analyses of the self-assembly tendency and drug delivery potency of mixed micelles with controlled multivalency provide important insights into the assembly and formation of nanophase-separated micelles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available