4.8 Article

Flexible integrated diode-transistor logic (DTL) driving circuits based on printed carbon nanotube thin film transistors with low operation voltage

Journal

NANOSCALE
Volume 10, Issue 2, Pages 614-622

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr07334h

Keywords

-

Funding

  1. Basic Research Programme of Suzhou Institute of Nanotech and Nano-bionics [Y5AAY21001]
  2. Strategic Priority Research Program of the Chinese Academy of Science [XDA09020201]
  3. Industry-University-Research Joint Project of Shenzhen China Star Optoelectroncis Technology Co., Ltd.
  4. National Natural Science Foundation of China [91623104]
  5. Key Research Program of Frontier Science of Chinese Academy of Sciences [QYZDB-SSW-SLH031]
  6. National Key Research and Development Program of China [2016YFB0401100]
  7. Science and Technology Program of Guangdong Province, China [2016B090906002]

Ask authors/readers for more resources

Fabrication and application of hybrid functional circuits have become a hot research topic in the field of printed electronics. In this study, a novel flexible diode-transistor logic (DTL) driving circuit is proposed, which was fabricated based on a light emitting diode (LED) integrated with printed high-performance single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs). The LED, which is made of AlGaInP on GaAs, is commercial off-the-shelf, which could generate free electrical charges upon white light illumination. Printed top-gate TFTs were made on a PET substrate by inkjet printing high purity semiconducting SWCNTs (sc-SWCNTs) ink as the semiconductor channel materials, together with printed silver ink as the top-gate electrode and printed poly(pyromellitic dianhydride-co-4,4'-oxydianiline) (PMDA/ODA) as gate dielectric layer. The LED, which is connected to the gate electrode of the TFT, generated electrical charge when illuminated, resulting in biased gate voltage to control the TFT from ON status to OFF status. The TFTs with a PMDA/ODA gate dielectric exhibited low operating voltages of +/- 1 V, a small sub-threshold swing of 62-105 mV dec(-1) and ON/OFF ratio of 10(6) , which enabled DTL driving circuits to have high ON currents, high dark-to-bright current ratios (up to 10(5) ) and good stability under repeated white light illumination. As an application, the flexible DTL driving circuit was connected to external quantum dot LEDs (QLEDs), demonstrating its ability to drive and to control the QLED.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Narrow-bandgap Sn-Pb mixed perovskite single crystals for high-performance near-infrared photodetectors

Zhizhen Chang, Zhengjun Lu, Wei Deng, Yandi Shi, Yuye Sun, Xiujuan Zhang, Jiansheng Jie

Summary: Narrow-bandgap Sn-Pb mixed perovskite single crystals show great potential as photoactive materials for efficient and low-cost near-infrared (NIR) photodetectors. However, the phase separation issue during crystallization process leads to the degradation of optical and electronic properties. In this study, a low-temperature space-confined technique (LT-SCT) is proposed to reduce the crystallization velocities and create pure-phase (FASnI(3))(0.1)(MAPbI(3))(0.9) single crystals. These crystals exhibit excellent crystallinity, high hole mobility, and low surface trap density, enabling their application in self-powered NIR photodetectors with outstanding performance. The work contributes to the development of Sn-Pb mixed perovskite single crystals and offers a promising candidate for efficient and low-cost NIR photodetection.

NANOSCALE (2023)

Article Chemistry, Physical

Strain effect on the field-effect sensing property of Si wires

Yuan Lin, Bingchang Zhang, Yihao Shi, Yongchao Zheng, Jia Yu, Jiansheng Jie, Xiaohong Zhang

Summary: Silicon-based field effect transistor (FET) sensors with high sensitivity have great potential for detecting chemical/biological species. This study investigates the impact of strain on the field-effect sensing property of silicon wires using humidity sensing as an example. The results show that the humidity sensitivity of FET sensors based on silicon wires increases with tensile strain but decreases with compressive strain. The findings highlight the potential of strain engineering in modulating the field-effect sensing property of Si wires for highly sensitive FET sensors.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2023)

Article Optics

Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection

Di Wu, Chenguang Guo, Longhui Zeng, Xiaoyan Ren, Zhifeng Shi, Long Wen, Qin Chen, Meng Zhang, Xin Jian Li, Chong-Xin Shan, Jiansheng Jie

Summary: Being able to sense broadband infrared light is crucial for various applications. Two-dimensional topological semimetals have been explored for this purpose due to their electronic structure and energy dispersion relation. However, their limitations in charge separation efficiency, noise level, and integration hinder their use in technology.

LIGHT-SCIENCE & APPLICATIONS (2023)

Article Nanoscience & Nanotechnology

Nonclassical Growth of Atomically Flat Two-Dimensional Organic Single Crystals on a Liquid Surface through Fusion

Jiarong Yao, Xinzi Tian, Bin Li, Zhaofeng Wang, Xiali Zhang, Jiansheng Jie, Fangxu Yang, Rongjin Li, Wenping Hu

Summary: A novel nonclassical crystallization mechanism is designed to reduce the defect density of organic single crystals and improve the mobility and optoelectronic properties of organic semiconductors. This research is of great significance for the development of next-generation electronics.

ADVANCED ELECTRONIC MATERIALS (2023)

Article Materials Science, Multidisciplinary

Impact of surface free energy on two-dimensional crystallization

Jiarong Yao, Lingjie Sun, Yanling Xiao, Jinyu Liu, Jiansheng Jie, Xuying Liu, Fangxu Yang, Yajing Sun, Rongjin Li, Wenping Hu

Summary: This study investigates the relationship between surface free energy and crystallization tendency of 2D organic crystals, and proposes a surface free energy anisotropy factor to measure this tendency. Two organic compounds were studied, and the one with a larger surface free energy anisotropy factor showed a higher tendency for 2D crystallization.

SCIENCE CHINA-MATERIALS (2023)

Article Chemistry, Multidisciplinary

Water-Surface-Mediated Precise Patterning of Organic Single-Crystalline Films via Double-Blade Coating for High-Performance Organic Transistors

Yanling Xiao, Wei Deng, Jiajing Hong, Xiaobin Ren, Xiujuan Zhang, Jialin Shi, Fangming Sheng, Xiaohong Zhang, Jiansheng Jie

Summary: The development of a simple double-blade-coating printing technique using wetting-patterned substrates allows for the production of highly crystalline organic semiconductor (OSC) thin films. This method significantly reduces the number of nucleation events, resulting in thin films with single-crystal domains and high yield. The organic field-effect transistor array fabricated from these patterned OSC thin films exhibits excellent performance with an average mobility of 11.5 cm(2) V-1 s(-1), which is 12.5-fold higher than the reference sample fabricated using conventional single-blade coating. This approach has the potential to be widely applied to other soluble organic materials, enabling the fabrication of multicomponent integrated electronics.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Materials Science, Multidisciplinary

Scalable Synthesis of High-Quality Core/Shell Quantum Dots With Suppressed Blinking

Chen-Lei Tao, Jinling Ma, Changting Wei, Dan Xu, Zhuoyi Xie, Zhengfei Jiang, Feiyue Ge, Han Zhang, Mingcai Xie, Zhiliang Ye, Fang Cheng, Bo Xu, Yuxi Tian, Xue-Jun Wu

Summary: A seed-mediated heat-up approach was developed to synthesize high-quality core/shell quantum dots with variable shell composition and tunable shell thickness. The CdSe/ZnCdS core/shell quantum dots showed suppressed blinking behavior and a high fraction of nonblinking quantum dots. Quantum-dot light-emitting diodes based on CdSe/ZnCdS core/shell quantum dots achieved a peak external quantum efficiency of 14.8% and low efficiency roll-off. This work provides a novel method for large-scale production of high-quality quantum dots and enhances their applications in various fields.

ADVANCED OPTICAL MATERIALS (2023)

Article Chemistry, Physical

A Multifunctional Small-Molecule Hole- Transporting Material Enables Perovskite QLEDs with EQE Exceeding 20%

Xiansheng Li, Mahdi Haghshenas, Linqin Wang, Jing Huang, Esmaeil Sheibani, Shichen Yuan, Xin Luo, Xuehan Chen, Changting Wei, Hengyang Xiang, Glib Baryshnikov, Licheng Sun, Haibo Zeng, Bo Xu

Summary: In this study, we designed a multifunctional small-molecule hole-transporting material (HTM) called X10 for use in perovskite quantum dot light-emitting diodes (Pe-QLEDs). X10 exhibited high hole mobility, good film-forming ability, strong solvent resistance, and defect passivation effect. Pe-QLEDs using X10 as the HTM achieved a promising external quantum efficiency (EQE) of 20.18%, which was 7-fold higher than that of reference HTM-TCTA-based ones (EQE approximately 2.88%). This is the first case where a small-molecule HTM has shown a high EQE over 20% in Pe-QLEDs. Our work provides important guidance for the rational design of multifunctional small-molecule HTMs for high-performance Pe-QLEDs.

ACS ENERGY LETTERS (2023)

Article Chemistry, Analytical

Fully Printed Organic Phototransistor Array with High Photoresponse and Low Power

Yuan Tan, Xinwei Zhang, Rui Pan, Wei Deng, Jialin Shi, Tianxing Lu, Junye Zhang, Jiansheng Jie, Xiujuan Zhang

Summary: Organic phototransistors (OPTs) as optical chemical sensors have significantly advanced, thanks to the development of new materials, device structures, and device interfacial engineering. In this study, a fully printed fabrication process is demonstrated, which allows the realization of a high-yield and low-voltage OPT array. The OPTs exhibit a low operation voltage of -1V and high photosensitivity, making them suitable for various low-power applications. The fabrication process may provide a pathway to integrated and low-power organic optoelectronic circuits for real-world applications.

CHEMOSENSORS (2023)

Article Nanoscience & Nanotechnology

Highly Solvent Resistant Small-Molecule Hole-Transporting Materials for Efficient Perovskite Quantum Dot Light-Emitting Diodes

Daqing Zhang, Changting Wei, Xiansheng Li, Shiyan Guo, Xin Luo, Xin Jin, Haitao Zhou, Jinhai Huang, Jianhua Su, Bo Xu

Summary: This study designed and synthesized three novel small-molecule hole-transporting materials, and found that HTM-X6 exhibited excellent solvent resistance, leading to an improved external quantum efficiency in Pe-QLEDs.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Materials Science, Multidisciplinary

Organic-Inorganic Hybrid Shortwave Infrared Up-conversion Imaging Devices with Ultra-high Refresh Rate and Excellent Resolution

Meng Zhang, Shuaiquan Xu, Ke Ding, Shuai Chen, Jinwen Wang, Chaoqiang Wang, Jing Pan, Xiujuan Zhang, Jiansheng Jie

Summary: A novel organic-inorganic hybrid optical up-conversion (OUC) imaging device is developed by stacking a phosphorescent organic light-emitting diode (OLED) with a NiSix/Si Schottky barrier diode (SBD). The device utilizes pyramidal microstructures of silicon to greatly enhance light absorption, enabling it to respond to broadband SWIR light beyond the bandgap limit of silicon. The device demonstrates excellent up-conversion imaging behaviors at SWIR light with an ultra-fast refresh rate of over 3000 Hz and a high-resolution imaging capability of 508 ppi. This work paves the way for the fabrication of high-performance, low-cost silicon-based OUC devices for SWIR imaging applications.

ADVANCED MATERIALS TECHNOLOGIES (2023)

Article Materials Science, Multidisciplinary

Lateral Homoepitaxy Growth of Organic Single-Crystal Arrays for Large-Scale and High-Performance Organic Field-Effect Transistors

Haoyu Jiang, Zhengjun Lu, Wei Deng, Fengquan Qiu, Yujian Zhang, Jialin Shi, Jiansheng Jie, Xiujuan Zhang

Summary: This paper presents a lateral homoepitaxy growth method that is compatible with scalable solution printing techniques, enabling the fabrication of centimeter-scale organic semiconductor single crystal arrays. The approach achieves high-uniformity morphology and low trap carrier density, leading to significantly improved organic field-effect transistor performance.

ACS MATERIALS LETTERS (2023)

Article Materials Science, Multidisciplinary

75 kbit printed indium oxide (IO)/indium gallium zinc oxide (IGZO) heterojunction photoelectric synaptic transistor arrays for an artificial visual memory system

Shuangshuang Shao, Suyun Wang, Min Li, Tanghao Xie, Yuxiao Fang, Penghui Guo, Zhaofeng Chen, Jianwen Zhao

Summary: With the development of neuromorphic electronics, the attention on designing and fabricating large-scale and cost-effective photoelectric synaptic transistors has grown. In this study, the largest printed indium oxide (IO)/indium gallium zinc oxide (IGZO) heterojunction photoelectric synaptic transistor arrays were reported with excellent photoelectric properties. These IO/IGZO synaptic transistors display outstanding electrical properties and demonstrate typical neuromorphic properties. The high-quality IO/IGZO oxide heterostructure contributes to the high device uniformity and outstanding electrical and neuromorphic properties. This work establishes a reliable and efficient strategy for fabricating high-performance, large-area artificial visual synapses based on IO/IGZO heterojunction transistors for artificial visual memory chips.

JOURNAL OF MATERIALS CHEMISTRY C (2023)

Article Chemistry, Multidisciplinary

Exploring the degradation of silver nanowire networks under thermal stress by coupling in situ X-ray diffraction and electrical resistance measurements

Laetitia Bardet, Herve Roussel, Stefano Saroglia, Masoud Akbari, David Munoz-Rojas, Carmen Jimenez, Aurore Denneulin, Daniel Bellet

Summary: The thermal instability of silver nanowires leads to increased electrical resistance in AgNW networks. Understanding the relationship between structural and electrical properties of AgNW networks is crucial for their integration as transparent electrodes in flexible optoelectronics. In situ X-ray diffraction measurements were used to study the crystallographic evolution of Ag-specific Bragg peaks during thermal ramping, revealing differences in thermal and structural transitions between bare and SnO2-coated AgNW networks.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Recording physiological and pathological cortical activity and exogenous electric fields using graphene microtransistor arrays in vitro

Nathalia Cancino-Fuentes, Arnau Manasanch, Joana Covelo, Alex Suarez-Perez, Enrique Fernandez, Stratis Matsoukis, Christoph Guger, Xavi Illa, Anton Guimera-Brunet, Maria V. Sanchez-Vives

Summary: This study provides a comprehensive characterization of graphene-based solution-gated field-effect transistors (gSGFETs) for brain recordings, highlighting their potential clinical applications.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Metal oxide-embedded carbon-based materials for polymer solar cells and X-ray detectors

Sikandar Aftab, Hailiang Liu, Dhanasekaran Vikraman, Sajjad Hussain, Jungwon Kang, Abdullah A. Al-Kahtani

Summary: This study examines the effects of hybrid nanoparticles made of NiO@rGO and NiO@CNT on the active layers of polymer solar cells and X-ray photodetectors. The findings show that these hybrid nanoparticles can enhance the charge carrier capacities and exciton dissociation properties of the active layers. Among the tested configurations, the NiO@CNT device demonstrates superior performance in converting sunlight into electricity, and achieves the best sensitivity for X-ray detection.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Peptide-mediated targeted delivery of SOX9 nanoparticles into astrocytes ameliorates ischemic brain injury

Hyo Jung Shin, Seung Gyu Choi, Fengrui Qu, Min-Hee Yi, Choong-Hyun Lee, Sang Ryong Kim, Hyeong-Geug Kim, Jaewon Beom, Yoonyoung Yi, Do Kyung Kim, Eun-Hye Joe, Hee-Jung Song, Yonghyun Kim, Dong Woon Kim

Summary: This study investigates the role of SOX9 in reactive astrocytes following ischemic brain damage using a PLGA nanoparticle plasmid delivery system. The results demonstrate that PLGA nanoparticles can reduce ischemia-induced neurological deficits and infarct volume, providing a potential opportunity for stroke treatment.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Spontaneous unbinding transition of nanoparticles adsorbing onto biomembranes: interplay of electrostatics and crowding

Anurag Chaudhury, Koushik Debnath, Nikhil R. Jana, Jaydeep K. Basu

Summary: The study investigates the interaction between nanoparticles and cell membranes, and identifies key parameters, including charge, crowding, and membrane fluidity, that determine the adsorbed concentration and unbinding transition of nanoparticles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Autonomous nanomanufacturing of lead-free metal halide perovskite nanocrystals using a self-driving fluidic lab

Sina Sadeghi, Fazel Bateni, Taekhoon Kim, Dae Yong Son, Jeffrey A. Bennett, Negin Orouji, Venkat S. Punati, Christine Stark, Teagan D. Cerra, Rami Awad, Fernando Delgado-Licona, Jinge Xu, Nikolai Mukhin, Hannah Dickerson, Kristofer G. Reyes, Milad Abolhasani

Summary: In this study, an autonomous approach for the development of lead-free metal halide perovskite nanocrystals is presented, which integrates a modular microfluidic platform with machine learning-assisted synthesis modeling. This approach enables rapid and optimized synthesis of copper-based lead-free nanocrystals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

In situ growth of a redox-active metal-organic framework on electrospun carbon nanofibers as a free-standing electrode for flexible energy storage devices

Zahir Abbas, Nissar Hussain, Surender Kumar, Shaikh M. Mobin

Summary: The rational construction of free-standing and flexible electrodes for electrochemical energy storage devices is an emerging research focus. In this study, a redox-active metal-organic framework (MOF) was prepared on carbon nanofibers using an in situ approach, resulting in a flexible electrode with high redox-active behavior and unique properties such as high flexibility and lightweight. The prepared electrode showed excellent cyclic retention and rate capability in supercapacitor applications. Additionally, it could be used as a freestanding electrode in flexible devices at different bending angles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

A NIR-driven green affording-oxygen microrobot for targeted photodynamic therapy of tumors

Lishan Zhang, Xiaoting Zhang, Hui Ran, Ze Chen, Yicheng Ye, Jiamiao Jiang, Ziwei Hu, Miral Azechi, Fei Peng, Hao Tian, Zhili Xu, Yingfeng Tu

Summary: Photodynamic therapy (PDT) is a promising local treatment modality in cancer therapy, but its therapeutic efficacy is restricted by ineffective delivery of photosensitizers and tumor hypoxia. In this study, a phototactic Chlorella-based near-infrared (NIR) driven green affording-oxygen microrobot system was developed for enhanced PDT. The system exhibited desirable phototaxis and continuous oxygen generation, leading to the inhibition of tumor growth in mice. This study demonstrates the potential of using a light-driven green affording-oxygen microrobot to enhance photodynamic therapy.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Novel hollow MoS2@C@Cu2S heterostructures for high zinc storage performance

Yujin Li, Jing Xu, Xinqi Luo, Futing Wang, Zhong Dong, Ke-Jing Huang, Chengjie Hu, Mengyi Hou, Ren Cai

Summary: In this study, hollow heterostructured materials were constructed using an innovative template-engaged method as cathodes for zinc-ion batteries. The materials exhibited fast Zn2+ transport channels, improved electrical conductivity, and controlled volume expansion during cycling. The designed structure allowed for an admirable reversible capacity and high coulombic efficiency.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Mechanistic elucidation of the catalytic activity of silver nanoclusters: exploring the predominant role of electrostatic surface

Paritosh Mahato, Shashi Shekhar, Rahul Yadav, Saptarshi Mukherjee

Summary: This study comprehensively elucidates the role of the core and electrostatic surface of metal nanoclusters in catalytic reduction reactions. The electrostatic surface dramatically modulates the reactivity of metal nanoclusters.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Facile green synthesis of wasted hop-based zinc oxide nanozymes as peroxidase-like catalysts for colorimetric analysis

Pei Liu, Mengdi Liang, Zhengwei Liu, Haiyu Long, Han Cheng, Jiahe Su, Zhongbiao Tan, Xuewen He, Min Sun, Xiangqian Li, Shuai He

Summary: This study demonstrates a simple and environmentally-friendly method for the synthesis of zinc oxide nanozymes (ZnO NZs) using wasted hop extract (WHE). The WHE-ZnO NZs exhibit exceptional peroxidase-like activity and serve as effective catalysts for the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). In addition, a straightforward colorimetric technique for detecting both H2O2 and glucose was developed using the WHE-ZnO NZs as peroxidase-like catalysts.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Impact of channel nanostructures of porous carbon particles on their catalytic performance

Hyunkyu Oh, Young Jun Lee, Eun Ji Kim, Jinseok Park, Hee-Eun Kim, Hyunsoo Lee, Hyunjoo Lee, Bumjoon J. Kim

Summary: Mesoporous carbon particles have unique structural properties that make them suitable as support materials for catalytic applications. This study investigates the impact of channel nanostructures on the catalytic activity of porous carbon particles (PCPs) by fabricating PCPs with controlled channel exposure on the carbon surface. The results show that PCPs with highly open channel nanostructures exhibit significantly higher catalytic activity compared to those with closed channel nanostructures.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Fabrication of a tough, long-lasting adhesive hydrogel patch via the synergy of interfacial entanglement and adhesion group densification

Yunjie Lu, Zhaohui Li, Zewei Li, Shihao Zhou, Ning Zhang, Jianming Zhang, Lu Zong

Summary: A tough, long-lasting adhesive and highly conductive nanocomposite hydrogel (PACPH) was fabricated via the synergy of interfacial entanglement and adhesion group densification. PACPH possesses excellent mechanical properties, interfacial adhesion strength, and conductivity, making it a promising material for long-term monitoring of human activities and electrocardiogram signals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Strongly coupled plasmonic metal nanoparticles with reversible pH-responsiveness and highly reproducible SERS in solution

Zichao Wei, Audrey Vandergriff, Chung-Hao Liu, Maham Liaqat, Mu-Ping Nieh, Yu Lei, Jie He

Summary: We have developed a simple method to prepare polymer-grafted plasmonic metal nanoparticles with pH-responsive surface-enhanced Raman scattering. By using pH-responsive polymers as ligands, the aggregation of nanoparticles can be controlled, leading to enhanced SERS. The pH-responsive polymer-grafted nanoparticles show high reproducibility and sensitivity in solution, providing a novel approach for SERS without the need for sample pre-concentration.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Unlocking the full potential of citric acid-synthesized carbon dots as a supercapacitor electrode material via surface functionalization

Melis Ozge Alas Colak, Ahmet Gungor, Merve Buldu Akturk, Emre Erdem, Rukan Genc

Summary: This research investigates the effect of functionalizing carbon dots with hydroxyl polymers on their performance as electrode materials in a supercapacitor. The results show that the functionalized carbon dots exhibit excellent electrochemical performance and improved stability.

NANOSCALE (2024)